| PLANNING and ENVIRONMENT ACT |
|------------------------------|
| Warnambool PLANNING SCHEME   |
|                              |
| <b>PERMIT NO. PA2201869</b>  |
|                              |
| MODIFIED ENDORSED PLAN       |
|                              |
| // Sheet 1 of 23             |
| $V V \sim I$                 |
|                              |
| Signed: for                  |
|                              |
| MINISTER FOR PLANNING        |
| Date: 06 March 2024          |
|                              |



## EMMANUEL COLLEGE

## STORMWATER MANAGEMENT PLAN

CRAWLEY STREET WARRNAMBOOL

> 28/02/2024 Version: 3

For: Emmanuel College



### **Document History**

#### Rev. No. Description of Revision

- 1 First Report
- 2 Amended appendix
- 3 Amended terminology

Disclaimer:

This report and the results shown and recommendations made herein are based upon the information, drawings, samples, tests and measurements referred to. The CSE Group, its consultants and agents accepts no liability for any damages, charges, costs or expenses in respect of or in relation to injury or death of any person or damage to any property or of other loss whatsoever arising either directly or indirectly from the use of this report, the carrying out of recommendations contained herein or the use of any goods or materials referred to.

### **Table of Contents**

#### Report

| 1.0 | INT | RODUCTION                              | 3 |
|-----|-----|----------------------------------------|---|
| 2.0 | EXI | STING CONDITIONS                       | 3 |
| 3.0 |     | SIGN REQUIREMENTS                      |   |
| 4.0 |     | SIGN & DISCUSSION                      |   |
|     | 4.1 | Pre-development Runoff                 | 4 |
|     | 4.2 | Coefficient of Runoff for Development  |   |
|     | 4.3 | Roof Stormwater Collection             |   |
|     | 4.4 | Infiltration during 1% AEP Storm Event | 4 |
|     | 4.5 | Storage for 1% AEP Storm Event         |   |
|     | 4.6 | Discharge for 1% AEP Storm Event       |   |
|     | 4.7 | Proposed Storm Water Connection Points | 5 |
|     | 4.8 | Overland Flow Path                     | 6 |
|     | 4.9 | Stormwater Quality Treatment           | 6 |
| 5.0 | COI | NCLUSION & RECOMENDATIONS              | 7 |
|     |     |                                        |   |

### Attachments

|          | <u>Sheet No.</u>  | Description                                                  |
|----------|-------------------|--------------------------------------------------------------|
|          | SW1               | Stormwater Catchment Plan                                    |
|          | SW2               | Site Soakage Test                                            |
|          | SW3               | Soak Test Calculations                                       |
|          | SW4               | Stormwater Storage & Discharge Calculation                   |
|          | SW5               | Orifice Plate Calculations                                   |
|          | SW6               | MUSIC Results                                                |
| 2022.152 | C-12, C-21 & C-32 | Year 9 Centre Stormwater Layout Plan, Long section & Details |

### References

The CSE Group Consulting Engineers

– 2022.152 Emmanuel College Year 9 Centre, Stormwater Management Plan, 28-09-2022



SED PLAN

for

MOD

#### 1.0 INTRODUCTION

A stormwater management plan was previously produced for the proposed year 9 centre off Crawley Street (CSE#2022.152). Recently, Emmanuel College was able monostic and the land ling known as 15 Crawley Street and are looking to apply for planning approvals formastafficerpark2004 this land and the land on 13 Crawley Street for teachers and staff at the year 9 centre. This stormwater report will review the proposed stormwater management system for the Year 9 Centre and adjust it to account for the additional land that is being developed into carparks and ensure the stormwater discharge from the subject site is compliant with Council requirements and BPEM guidelines. Whilst subject to further planning approval, the stormwater infrastructure would be designed to allow for any future development such as hardstands and carparking areas. Stormwater detention is investigated for the proposed site and carpark to limit the adverse effects of stormwater on downstream properties up to the 1% AEP rainfall event. Stormwater treatment is designed to meet BPEM guidelines.

#### 2.0 **EXISTING CONDITIONS**

The proposed site for the year 9 centre and carpark falls northeast onto Crawly Street. There is an existing Council underground drainage pipe approximately 60m east of the proposed site which runs north along Ardlie Street and discharges into Russell's Creek.

Ground contours indicate that overland flow paths from the proposed site do not reach the Russell Creek and instead become land locked in a low-lying area on the block surrounded by Conns Lane. Ardlie Street, Wentworth Street and Barbers Lane. Water sitting in this location would likely pond in a major event before infiltrating into the ground.

#### 3.0 **DESIGN REQUIREMENTS**

It is anticipated that the proposed site will be required to meet the following conditions:

- Underground drainage to the legal point of discharge.
- On-site detention of stormwater to limit outflows to pre-development conditions in a 1% AEP rainfall event (due to the lack of overland outfall).
- All stormwater to be designed in accordance with the Infrastructure Design Manual & AS/NZS 3500.
- Meet Best Practice Environmental Guidelines:
  - 80% Reduction in Suspended Solids
  - 45% Reduction in Total Phosphorus
  - 45% Reduction in Total Nitrogen
  - 70% Reduction in Gross Pollutants
  - Maintain flows at 1.5 year ARI pre-development levels



MOD

### 4.0 REVIEW, DESIGN & DISCUSSION

The stormwater management system that was proposed for the Year **Gigmentre as part of the for** 2022.152 SWMP incorporates a stormwater detention tank to attenuate flows from ground water runoff and a raingarden treatmentiareau to treat stormwater to BPEM. With the inclusion of more impervious surface from the proposed carpark the same elements will be utilised, though their sizes will be adjusted to suit the proposed conditions.

Stormwater attenuation is designed to limit flows to pre-developed conditions in a 1% AEP rainfall event to prevent exacerbation of flooding in the land locked area to the east.

Stormwater quality improvements are designed to meet or exceed BPEM guidelines.

#### 4.1 Catchments & Coefficient of Runoff for Development

The Coefficient of Runoff of the development has been calculated in accordance with the infrastructure design manual and the following:

- Landscaped Areas 0.25
- Low Density Residential Zone > 2ha 0.3
- Commercial Zones 0.9
- Paved Areas 0.95

Catchments were determined based on landform and surface finishes. Layouts of the catchments are provided in the appendix with results summarised below:

| Catchment | Catchment                          | Area          | Runoff      |
|-----------|------------------------------------|---------------|-------------|
| No.       | Name                               | ( <i>m</i> ²) | Coefficient |
| 5         | Crawley Yard & Carpark             | 1234          | 0.95        |
| 8         | West of Footpath Landscaping       | 324           | 0.25        |
| 9         | North of Year 9 Centre Landscaping | 1252          | 0.25        |
| 10        | South of Gym Landscaping           | 351           | 0.25        |
| 11        | Year 9 Centre & Entrance Courtyard | 3538          | 0.95        |

#### 4.2 Pre-development Runoff

The Rational Method is used to determine the pre-development runoff for a 1% AEP event with a **10 minute** time of concentration and a **0.3** runoff coefficient. Allowable runoff for the new development was calculated to be:

• Year 9 Centre & Crawley Street Carpark – 70.3 litres / second

#### 4.3 Roof Stormwater Collection

Rainfall collected from the roof of the year 9 building has been addressed in the previous report. Please refer to the 2022.152 SWMP for further details.

#### 4.4 Infiltration during 1% AEP Storm Event

The hydraulic conductivity of the soil surrounding the matrix tank was determined in a single bore hole in close proximity to the proposed soakage area. During excavation of the bore hole the following soil profile was discovered:

Emmanuel College Stormwater Management Plan Update for Crawley Street Development



ISTER FOR PLANI Date: 06 March 202 for

NING

Signed:

MINISTI

- Topsoil to 200mm depth
- Medium grain, brown sand to 500mm depth
- Medium to coarse grain, white sand to 780mm depth
- Bore hole refusal at 780mm

The bore hole was pre-soaked with water prior to the soakage test to ensure the test reflected the soils capacity to infiltrate water when wet. A soakage test was constructed in the coarse sand and tested using the constant head method. Test details are included on sheet SW2 and the following results were determined:

- Soak Test 1 180mm/hr
- Soak Test 2 120mm/hr
- Soak Test 3 82mm/hr

It should be noted that previous soil tests on the subject site show that there is a layer of sandstone over dune sands which have high infiltration rates. Previous soakage tests conducted on the site that have managed to get below the sandstone have resulted in higher rates of hydraulic conductivity. For the purposes of this report, the average hydraulic conductivity of 137mm/hr was adopted for the design of the matrix tank as per sheet SW3. The proposed 5.5m x 2.4m x 1.5m soakage pit is expected to soak 0.75 L/s.

#### 4.5 Storage for 1% AEP Storm Event

The required storage volume for the proposed development is shown on sheet SW3 to limit development flows to peak pre-development flows for a 1% AEP storm event. Storage volumes are:

• Year 9 Centre – 65.0 kilolitres

It is proposed that the previously recommended 100 kilolitre rainwater detention / retention tank be retained to limit flows from the roof (see prior 2022.152 SWMP for further details). The underground infiltration tank was upsized to a 17.8 kilolitre to limit flows from surface water. The underground tank limits discharge flows to pre-development levels through both storing excess stormwater for later release and infiltrating some stormwater into groundwater stores. The raingarden also provides some storage capacity but is primarily used to improve stormwater discharge quality. For details refer to sheet C-12.

#### 4.6 Discharge for 1% AEP Storm Event

Discharge rates are to be limited to the 1% AEP rainfall event using an orifice plate located at the outlet of the underground infiltration tank. The orifice calculation can be found on sheet SW4 and is summarised below:

• Year 9 Centre, underground tank – 150mm dia. @ bottom of tank

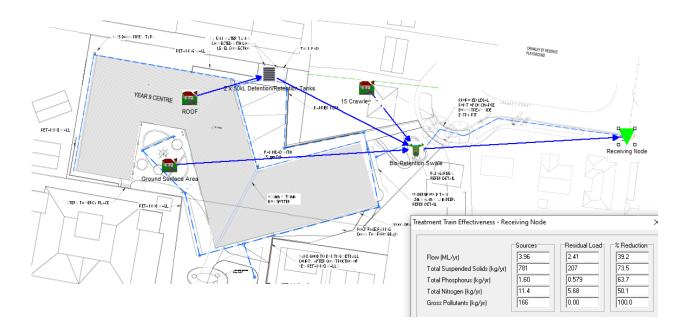
The orifice for the above ground tanks was previously calculated in the 2022.152 report, please refer to this report for above ground tank details.

#### 4.7 Proposed Storm Water Connection Points

Proposed discharge points for each allotment are:

• Year 9 Centre – Stormwater pit at front of 5 Crawley Street

Pipe size for the connection between the raingarden and council drainage assets is 150mm uPVC.




#### 4.8 Overland Flow Path

In storm events where the drainage system is exceeded, site stormwater will surcharge from the underground storage pit and head east down Crawley Street and south down Ardlie Street before ending up in the low-lying area between Conns Lane, Ardlie Street, Wentworth Street and Barbers Lane. Flows in a 1% AEP event will be limited to pre-development levels ensuring flooding in this area is not exacerbated.

#### 4.9 Stormwater Quality Treatment

Upon review of the previous system (2022.152 SWMP) it was found that the proposed raingarden was able to be reduced in size and still meet BPEM. The proposed stormwater detention system & raingarden was modelled in MUSIC to determine the effectiveness of these treatments at reducing stormwater pollutants from entering the stormwater network. A summary of results is presented below as a screenshot and a table with detailed results provided in the appendix. The quality of stormwater leaving the site is expected to exceed BPEM requirements.



|                                   | Source | <b>Residual Loads</b> | % Reduction | BPEM % Targets |
|-----------------------------------|--------|-----------------------|-------------|----------------|
| Flow (ML/yr)                      | 3.96   | 2.41                  | 39.2        | -              |
| Total Suspended Solids<br>(kg/yr) | 781    | 207                   | 73.5        | 80             |
| Total Phosphorus (kg/yr)          | 1.60   | 0.579                 | 63.7        | 45             |
| Total Nitrogen (kg/yr)            | 11.4   | 5.68                  | 50.1        | 45             |
| Gross Pollutants (kg/yr)          | 166    | 0.00                  | 100.0       | 70             |

#### PLANNING and ENVIRONMENT ACT Warnambool PLANNING SCHEME

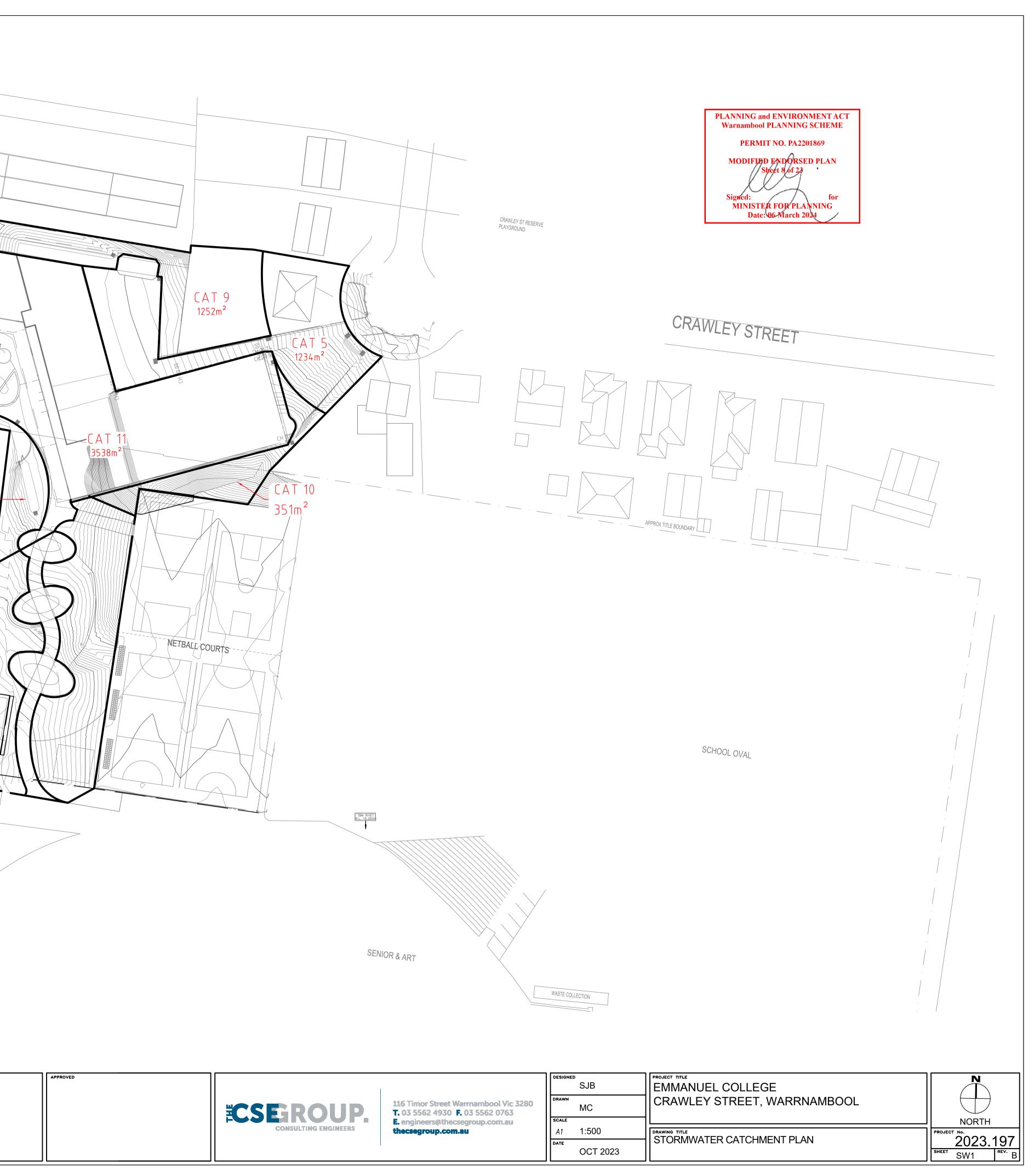
PERMIT NO. PA2201869

MODIFUED ENDORSED PLAN Sheet 6 of 23 Signed: for MINISTER FOR PERSONS

Date: 06 March 202



### 5.0 CONCLUSION & RECOMENDATIONS


The adjusted Stormwater Management Plan for the proposed Year 9 Centre Development, requires the following works:

- Year 9 Centre (refer previous 2022.152 SWMP):
  - Connect all roof water down pipes by charged 125/150/225mm diameter stormwater pipe to a 100 kilolitre rainwater detention / retention tank.
  - Install 125mm diameter mid-level outlet in rainwater detention tank and connect to bioretention swale.
- Changes to Underground Drainage System to allow for potential future impervious surfaces:
  - Install 5m long 2m wide bioretention swale between outlet of underground drainage network and underground storage network for stormwater quality treatment.
  - o Install underground 17.8 kilolitre detention / infiltration tank as per attached details.
  - Connect underground pit with 150mm diameter uPVC to legal point of discharge.

--- END OF REPORT ---

| PLANNING and ENVIRONMENT ACT<br>Warnambool PLANNING SCHEME                                             |
|--------------------------------------------------------------------------------------------------------|
| <b>PERMIT NO. PA2201869</b>                                                                            |
| MODIFIED ENDORSED PLAN<br>Sheet 7 of 23<br>Signed: for<br>MINISTER FOR PLANNING<br>Date: 06-March 2024 |

YEAR 9 CENTRE \_\_\_\_\_ CAT'8 324m² MERCY PLACE AGED CARE FACILITY TBM SPIK R.L. 21.47 FUTSAL COURT G BLOCK LAYOUT PLAN SCALE 1:500 28/02/2024 30/11/2023 AMENDED PROJECT TITLE B PRELIMINARY ISSUED FOR COMMENT А REV. DATE DESCRIPTION



| APPROVED |                      |                                                                          | DESIGNE     | SJB      |    |
|----------|----------------------|--------------------------------------------------------------------------|-------------|----------|----|
|          | <b>CSEGROUP</b>      | 116 Timor Street Warrnambool Vic 3280<br>T. 03 5562 4930 F. 03 5562 0763 | DRAWN       | МС       | C  |
|          | CONSULTING ENGINEERS | E. engineers@thecsegroup.com.au<br>thecsegroup.com.au                    | scale<br>A1 | 1:500    |    |
|          |                      |                                                                          | DATE        | OCT 2023 | S1 |

F:\archive\2023\2023.197 EC 15 Crawley St\C3D\2023.197 Catchments.dwg, SW1, 28/02/2024 11:15:46 AM, stephenb, AutoCAD PDF (High Quality Print).pc3, ISO full bleed A1 (841.00 x 594.00 MM), 1:1



116 Timor Street Warrnambool Vic 3280 **T.** 03 5562 4930 **F.** 03 5562 0763 **ABN.** 59 077 506 506 **E.** engineers@thecsegroup.com.au **thecsegroup.com.au** 

| Project: 2023.197                                     |                                      |
|-------------------------------------------------------|--------------------------------------|
| Address: 15 CRAWLEY STREET, W'B                       | OCL Date: 29/8/23 Operators: SB, MC  |
|                                                       | Recent Weather: # FAIR, SOME DRIZZLE |
| Test: SOIL PERMEABILITY WORKSHEET                     | Site Conditions: SUNNY               |
| Auger: Manual auger Dechanical Auger                  |                                      |
| Method: 🗹 Constant Head 🛛 🗆 Falling Head              | Site Diars                           |
| Comments:                                             | Site Plan:                           |
|                                                       |                                      |
| Soak Well Properties                                  |                                      |
| Daimeter Auger Hole: 0.055 m                          | CRAWLEY ST                           |
| Diameter Tube: 0.035 m                                |                                      |
| Diameter inner tube: 0.009 m                          |                                      |
| Hole Depth at Start of Test D <sub>s</sub> : $780$ mm |                                      |
| Apparatus Depth D <sub>a</sub> : $250$ mm             | n 4,5m                               |
| Hole depth at end of test D <sub>e</sub> :            | n 4.5m<br>TO FEETPART X              |
| Test Depth (= $D_e$ - $D_a$ ): 530 mm                 | DAI VEAK                             |
|                                                       | 8,00 9                               |
| Bore Hole Log                                         | FROM CENTRE                          |
| Start End Description                                 | TITLE                                |
| O 200 BLACK TOPSOIL                                   | PLANNING and ENVIRONMENT ACT         |
| 200 500 RED SAND FINE GRAN                            | Warnambool PLANNING SCHEME           |
| 500 780 Mort YELLOW SAND                              | RECANDSTOLLE                         |
| 780 BH Refusal                                        | PERMIT NO. PA2201869                 |
|                                                       | MODIFUD ENDORSED PLAN                |
|                                                       | Sheet 9 of 23                        |
| vi                                                    |                                      |
|                                                       |                                      |
|                                                       | Signed: for                          |
|                                                       | MINISTER FOR PLANNING                |

Test 1 SHIELD

 $\sim 1$ 

| Reading | Time        | Interval |       |
|---------|-------------|----------|-------|
| (mm)    | (m:ss)      | (s)      |       |
| 100     |             |          |       |
| 200     |             |          |       |
| 300     | 27          |          | ]     |
| 400     | 44          | 17       |       |
| 500     | 1:01        | +617     |       |
| 600     | 1:20        | 19       | ]     |
| 700     | 1:40        | 20       | ]     |
| 800     | 2:02        | 22       |       |
| 900     | 2:26        | 24       | ]     |
| 1000    | 2:50        | 24       | ]     |
| 1100    |             |          | ]     |
| 1200    |             |          | ]     |
| 1300    |             |          | ]     |
|         |             |          | _     |
| 100m    | m Interval: | 20       | s     |
| Pe      | rmeability: | 180      | ]mm/h |

Test 2 - S HIELD

| Reading | Time   | Interval |
|---------|--------|----------|
| (mm)    | (m:ss) | (s)      |
| 100     |        |          |
| 200     | 1:26   |          |
| 300     | 1:57   | 31       |
| 400     | 2:25   | 28       |
| 500     | 2:54   | 29       |
| 600     | 2:24   | 30       |
| 700     | 3:53   | 29       |
| , 800   | 4:23   | 30       |
| 900     | 4:53   | 30       |
| 1000    | 5:24   | 31       |
| 1100    |        |          |
| 1200    |        |          |
| 1300    |        |          |
|         |        |          |

100mm Interval: 30 s Permeability: 120 mm/h

Interval Reading Time (mm) (m:ss) (s) 100 200 300 400 1:54 500 2:36 600 3:17 700 42 3:59 800 4:42 43 900 1000 1100 1200 1300 100mm Interval: 42 S Permeability: 82 mm/h

Date: 06 March 202

Test 3



29-Aug-23 SB, MC

Date:

By:

#### 2023.197 Emmanuel College 15 Crawley St 15 Crawley Street, Warrnambool, 3280

#### Soakage Testing

Soak Test 1

| Location:              | See Field Sheet                     |
|------------------------|-------------------------------------|
| Method:                | СНТ                                 |
| Site Conditions:       | Grassed area. Slight fall to SE     |
| <b>Recent Weather:</b> | Warm, fine for several days         |
| Comments:              | Hole presoaked for several minutes. |

| Soak Well Properties |       | Round Well |   |
|----------------------|-------|------------|---|
| Diameter (auger hole | 0.055 | m          |   |
| Diameter (tube)      | 0.035 | m          |   |
| Diameter (inner tube | 0.009 | m          |   |
| Depth                | 0.530 | m          | h |
| Vol.                 | 1.26  | L          | - |

#### **Constant Head Test**

 $k_{\rm h} = Q / [\pi r_{\rm o}^2 + 2\pi r_{\rm o} h]$ 

$$Q = V_c / t_c$$

| Test 1                 |       |       |         |                     |                                  |       |          |  |
|------------------------|-------|-------|---------|---------------------|----------------------------------|-------|----------|--|
| Water                  | Time  |       | Reading | Discharge           | k <sub>h</sub> Soil Conductivity |       | Comments |  |
| Source                 | (min) | (sec) | (m)     | (m <sup>3</sup> /s) | m/sec                            | mm/hr |          |  |
|                        | 0     | 27    | 0.3     |                     |                                  |       |          |  |
| <mark>∕</mark>         | 0     | 44    | 0.4     | 5.29E-06            | 5.63E-05                         | 202.5 |          |  |
| р<br>Ц                 | 1     | 1     | 0.5     | 5.29E-06            | 5.63E-05                         | 202.5 |          |  |
| sse                    | 1     | 20    | 0.6     | 4.73E-06            | 5.03E-05                         | 181.2 |          |  |
| - ¥                    | 1     | 40    | 0.7     | 4.49E-06            | 4.78E-05                         | 172.1 |          |  |
| ad                     | 2     | 2     | 0.8     | 4.08E-06            | 4.35E-05                         | 156.5 |          |  |
| н                      | 2     | 26    | 0.9     | 3.74E-06            | 3.98E-05                         | 143.4 |          |  |
| Constant Head Assembly | 2     | 50    | 1       | 3.74E-06            | 3.98E-05                         | 143.4 |          |  |
| nsta                   |       |       |         |                     |                                  |       |          |  |
| Ö                      |       |       |         |                     |                                  |       |          |  |
|                        |       |       |         |                     |                                  |       |          |  |
|                        |       |       |         |                     |                                  |       |          |  |

mm/hr

172

PLANNING and ENVIRONMENT ACT Warnambool PLANNING SCHEME

**PERMIT NO. PA2201869** 

MINISTER FOR PLANNING

Date: 06 March 202

**ED PLAN** 

for

MODIFIED

Signed:

| Test 2   |       |       |         |                     |                       |             |          |
|----------|-------|-------|---------|---------------------|-----------------------|-------------|----------|
| Water    | Time  |       | Reading | Discharge           | k <sub>h</sub> Soil C | onductivity | Comments |
| Source   | (min) | (sec) | (m)     | (m <sup>3</sup> /s) | m/sec                 | mm/hr       |          |
|          | 1     | 26    | 0.2     |                     |                       |             |          |
| ≥        | 1     | 57    | 0.3     | 2.90E-06            | 3.08E-05              | 111.1       |          |
| Assembly | 2     | 25    | 0.4     | 3.21E-06            | 3.42E-05              | 123.0       |          |
| ser      | 2     | 54    | 0.5     | 3.10E-06            | 3.30E-05              | 118.7       |          |
| As       | 3     | 24    | 0.6     | 2.99E-06            | 3.19E-05              | 114.8       |          |
| be       | 3     | 53    | 0.7     | 3.10E-06            | 3.30E-05              | 118.7       |          |
| Head     | 4     | 23    | 0.8     | 2.99E-06            | 3.19E-05              | 114.8       |          |
| t        | 4     | 53    | 0.9     | 2.99E-06            | 3.19E-05              | 114.8       |          |
| stant    | 5     | 24    | 1       | 2.90E-06            | 3.08E-05              | 111.1       |          |



#### 2023.197 Emmanuel College 15 Crawley St 15 Crawley Street, Warrnambool, 3280

#### Soakage Testing



Average k<sub>h</sub> 116 m

mm/hr

| Water                  | ٦     | Гime  | Reading | Discharge           | k <sub>h</sub> Soil Conductivity |       | Comments |
|------------------------|-------|-------|---------|---------------------|----------------------------------|-------|----------|
| Source                 | (min) | (sec) | (m)     | (m <sup>3</sup> /s) | m/sec                            | mm/hr |          |
|                        | 1     | 54    | 0.4     |                     |                                  |       |          |
| ≥                      | 2     | 36    | 0.5     | 2.14E-06            | 2.28E-05                         | 82.0  |          |
| qu                     | 3     | 17    | 0.6     | 2.19E-06            | 2.33E-05                         | 84.0  |          |
| ser                    | 3     | 59    | 0.7     | 2.14E-06            | 2.28E-05                         | 82.0  |          |
| As                     | 4     | 42    | 0.8     | 2.09E-06            | 2.22E-05                         | 80.1  |          |
| Constant Head Assembly |       |       |         |                     |                                  |       |          |
| Ĕ                      |       |       |         |                     |                                  |       |          |
| t                      |       |       |         |                     |                                  |       |          |
| sta                    |       |       |         |                     |                                  |       |          |
| Suo                    |       |       |         |                     |                                  |       |          |
| Ō                      |       |       |         |                     |                                  |       |          |
|                        |       |       |         |                     |                                  |       |          |

Average k<sub>h</sub> 82 mm/hr

| PLANNING and ENVIRONMENT ACT<br>Warnambool PLANNING SCHEME                                              |
|---------------------------------------------------------------------------------------------------------|
| <b>PERMIT NO. PA2201869</b>                                                                             |
| MODIFUED ENDORSED PLAN<br>Sheet 11/of 28<br>Signed: for<br>MINISTER FOR PLANNING<br>Date: 06 March 2024 |

PLANNING and ENVIRONMENT ACT Warnambool PLANNING SCHEME

116 Timor Street Warrnambool Vic 3280 **T**, 03 5562 4930 **F**. 03 5562 0763 ABN. 59 077 506 506 E. engineers@thecsegroup.com.au Bredsegroup.com.au Bredsegroup.com.au Bredsegroup.com.au () 1869

75% Impervious

2022.152 Emmanuel College - Year Nine Centre 140 Botanic Road, Warrnambool, 3280

#### Storage & Infiltration Calculation

CONSULTING ENGINEERS

ESEGROU

| Site Characteristics          | Area<br>(m²) | Runoff<br>Coefficient | C x A  |
|-------------------------------|--------------|-----------------------|--------|
| CAT 11 Year 9 Centre and yard | 3538         | 0.95                  | 3361.1 |
| CAT 5 Crawley yard & carpark  | 1234         | 0.95                  | 1172.3 |
| CAT 9 North grass             | 1252         | 0.25                  | 313    |
| CAT 8 West of footpath grass  | 324          | 0.25                  | 81     |
| South east of gym             | 351          | 0.25                  | 87.75  |
|                               |              |                       |        |
| Totals (m <sup>2</sup> )      | 6699         |                       | 5015   |

#### MODIFLED ENDORSED PLAN Sheet 12/of 28 . Signed: for MINISTER FOR PLANNING Date: 06 March 2024

Predevelopment Runoff Predev. Runoff Coefficient - C 0.3 Find CA (Total Area by C) 2009.7 m<sup>2</sup> Storm Event Time of Concentration 1% AEP 10 mins Warrnambool Locality Code Intensity - I Runoff Q = CAI / 3600 WARR 126.0 mm/hr 70.3 L/s

| WSUD Measures                                 |                   |                                   |                                                  | Effective        | Storage |
|-----------------------------------------------|-------------------|-----------------------------------|--------------------------------------------------|------------------|---------|
|                                               |                   |                                   | 1                                                | nfiltration Area | Volume  |
|                                               |                   |                                   |                                                  | (m²)             | (m³)    |
| Rainwater Tank                                |                   |                                   |                                                  |                  |         |
| Number of tanks                               | 1                 | Height (m)                        | 2.18                                             |                  |         |
| Detention Volume                              | 50 m <sup>3</sup> | Diameter (m)                      | 7.642                                            |                  |         |
| Retention Volume                              | 50 m <sup>3</sup> |                                   |                                                  |                  |         |
| % retention for private use                   | 50%               | Vol = n * (pi * D^2/4             | * h) * (1-percentage)                            |                  | 50.00   |
| Underground Matrix Pit                        |                   |                                   |                                                  |                  |         |
| Length - L                                    | 5.5 m             | Base Infiltration Area            | $A_{inf} = WxLx(1-F_b)$                          | 13.20            |         |
| Width - W                                     | 2.4 m             | Perimeter Infiltration            | Area = 0.5*P*D                                   | 11.85            |         |
| Depth of Storage - d                          | 1.5 m             |                                   |                                                  |                  |         |
| Infiltration Blockage Factor - F <sub>b</sub> | 0%                | Storage Volume                    |                                                  |                  | 17.82   |
| Storage Porosity P <sub>s</sub>               | 90%               | $S_B = L \times W$                | / x d x P <sub>s</sub> + (LxWxd <sub>bed</sub> ) |                  |         |
| Infiltration Bed Depression dbed              | 0 m               |                                   |                                                  |                  |         |
| Swale                                         |                   |                                   |                                                  |                  |         |
| Length - L                                    | 5 m               | Base Infiltration Area            | $A_{inf} = WxLx(1-F_b)$                          | 10.00            |         |
| Width - W                                     | <mark>2</mark> m  | Perimeter Infiltration            | Area = 0.5*P*D*(1-F <sub>b</sub>                 | 4.20             |         |
| Depth of Storage - d <sub>i</sub>             | 0.6 m             | Storage Volume - ir               | filtration media                                 |                  | 1.20    |
| Infiltration Blockage Factor - Fb             | 0%                | $S_i = L \times W$                | x d <sub>i</sub> x P <sub>s</sub>                |                  |         |
| Storage Porosity P <sub>s</sub>               | 20%               | Basin Vol. S <sub>a</sub> = L ((V | V d <sub>w</sub> ) + ((6 d <sub>w</sub> ^2)/2))  |                  | 2.60    |
| Infiltration Bed Depression d <sub>w</sub>    | 0.2 m             |                                   |                                                  |                  |         |
|                                               |                   | TOTALS                            |                                                  | 39.25            | 71.62   |

| Soil Characteristics  |          |            |                    |          |      |  |
|-----------------------|----------|------------|--------------------|----------|------|--|
| Soil K <sub>h</sub>   | 137      | mm/hr      | Infiltration Rate* | 7.49E-04 | m³/s |  |
|                       | 3.81E-05 | m/s        |                    | 0.749    | L/s  |  |
| Moderating Factor - U | 0.5      | Sandy soil |                    |          |      |  |

Equal to Predevelopment Runoff Conditions (unless no connection available)

Allow Piped Outflow Q<sub>p</sub> 1% AED Dainfall Event 70.3

L/s

| Time              | Rainfall  | Volume In                        | Piped flow                | Nett Inflow Vol.                     | Soakage Out                           | Storage Volume                | Percentage of                     | Storage are |
|-------------------|-----------|----------------------------------|---------------------------|--------------------------------------|---------------------------------------|-------------------------------|-----------------------------------|-------------|
| (Duration)<br>min | Intensity | CAID/60.000                      |                           |                                      | [A <sub>eff</sub> ] Uk <sub>h</sub> t | Required                      | storage provided                  | adequate    |
|                   | ,         |                                  |                           |                                      |                                       |                               | <b>.</b> .                        | adequate    |
| D                 | mm/hr     | I <sub>v</sub> (m <sup>3</sup> ) | $O_{p}$ (m <sup>3</sup> ) | I <sub>v</sub> - O <sub>p</sub> (m3) | O <sub>s</sub> (m <sup>3</sup> )      | $S_R = I_V - O_p - O_s (m^3)$ | S <sub>T</sub> / S <sub>R</sub> % |             |
| 0                 | 0         | 0                                | 0                         | 0                                    | 0                                     | 0                             |                                   | Yes         |
| 1                 | 268.0     | 22.40                            | 4.22                      | 18.18                                | 0.04                                  | 18.14                         | 395%                              | Yes         |
| 2<br>3            | 202.0     | 33.77                            | 8.44                      | 25.33                                | 0.09                                  | 25.24                         | 284%                              | Yes         |
| 3                 | 185.0     | 46.39                            | 12.66                     | 33.73                                | 0.13                                  | 33.59                         | 213%                              | Yes         |
| 4                 | 173.0     | 57.84                            | 16.88                     | 40.96                                | 0.18                                  | 40.78                         | 176%                              | Yes         |
| 5                 | 163.0     | 68.12                            | 21.10                     | 47.02                                | 0.22                                  | 46.80                         | 153%                              | Yes         |
| 10                | 126.0     | 105.32                           | 42.20                     | 63.11                                | 0.45                                  | 62.67                         | 114%                              | Yes         |
| 15                | 103.0     | 129.14                           | 63.31                     | 65.83                                | 0.67                                  | 65.16                         | 110%                              | Yes         |
| 20                | 86.3      | 144.27                           | 84.41                     | 59.86                                | 0.90                                  | 58.96                         | 121%                              | Yes         |
| 25                | 74.8      | 156.31                           | 106                       | 50.80                                | 1.12                                  | 49.67                         | 144%                              | Yes         |
| 30                | 66.1      | 165.75                           | 127                       | 39.14                                | 1.35                                  | 37.79                         | 190%                              | Yes         |
| 45                | 49.6      | 186.56                           | 190                       | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 60                | 40.3      | 202.11                           | 253                       | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 90                | 30.1      | 226.43                           | 380                       | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 120               | 24.6      | 246.75                           | 506                       | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 180               | 18.6      | 279.85                           | 760                       | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 270               | 14.3      | 322.72                           | 1139                      | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 360               | 12.0      | 361.09                           | 1519                      | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 540               | 9.3       | 421.57                           | 2279                      | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 720               | 7.8       | 471.22                           | 3039                      | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 1080              | 6.1       | 547.96                           | 4558                      | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 1440              | 5.0       | 603.02                           | 6077                      | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 1800              | 4.3       | 643.95                           | 7597                      | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 2160              | 3.7       | 675.24                           | 9116                      | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 2880              | 3.0       | 717.37                           | 12155                     | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 4320              | 2.1       | 761.90                           | 18232                     | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 5760              | 1.6       | 779.96                           | 24309                     | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 7200              | 1.3       | 794.40                           | 30387                     | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 8640              | 1.1       | 801.62                           | 36464                     | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |
| 10080             | 1.0       | 96.40                            | 4947                      | 0.00                                 | 0.00                                  | 0.00                          |                                   | Yes         |



### 2023.197 Emmanuel College 15 Crawley St 15 Crawley Street, Warrnambool, 3280

#### **Orifice Plate**

 $Q = C_d a_o \sqrt{[2gh]}$  Rate of Discharge

| C <sub>d</sub> | 0.63     |      | Coefficeint of Discharge   |
|----------------|----------|------|----------------------------|
| Q              | 70       | L/s  | Flow Rate                  |
|                | 0.07     | m³/s |                            |
| h              | 1.5      | m    | Water height above orifice |
|                |          |      |                            |
| g              | 9.81     | m/s  | m/s gravity                |
| a <sub>o</sub> | 0.020482 | m²   | Area of Orifice            |
|                |          |      |                            |
| Orifice Dia.   | 0.161    | m    |                            |
|                | 161      | mm   |                            |

| PLANNING and ENVIRONMENT ACT<br>Warnambool PLANNING SCHEME |
|------------------------------------------------------------|
| <b>PERMIT NO. PA2201869</b>                                |
| MODIFLED ENDORSED PLAN<br>Sheet 13/of 28                   |
| Signed: for                                                |
| MINISTER FOR PLANNING<br>Date: 06-March 2024               |

File: 2023.197 Drainage (ID 255348).xlsm Sheet: Orifice Plate

## ESEGROUP. CONSULTING ENGINEERS

#### 116 Timor Street Warrnambool Vic 3280 T. 03 5562 4930 F. 03 5562 0763 ABN. 59 077 506 506 E. engineers@thecsegroup.com.au thecsegroup.com.au

MODIFIED EN

|                                                                |                 |                     | / `                 | ^                                      |
|----------------------------------------------------------------|-----------------|---------------------|---------------------|----------------------------------------|
| Location                                                       | ROOF            | Ground Surface Area | 15 Crawley Carpaned | for                                    |
| ID                                                             | 1               | 5                   | MINE                | TER FOR PLANNING<br>ate: 06 March 2024 |
| Node Type                                                      | UrbanSourceNode | UrbanSourceNode     | UrbanSourceNode     | ate: 00-wiarch 2024                    |
| Total Area (ha)                                                | 0.313           | 0.3                 | 0.072               |                                        |
| Area Impervious (ha)                                           | 0.313           | 0.224421053         | 0.065024211         |                                        |
| Area Pervious (ha)                                             | 0               | 0.075578947         | 0.006975789         |                                        |
| Field Capacity (mm)                                            | 80              | 80                  | 80                  |                                        |
| Pervious Area Infiltration Capacity coefficient - a            | 200             | 200                 | 200                 |                                        |
| Pervious Area Infiltration Capacity exponent - b               | 1               | 1                   | 1                   |                                        |
| Impervious Area Rainfall Threshold (mm/day)                    | 1               | 1                   | 1                   |                                        |
| Pervious Area Soil Storage Capacity (mm)                       | 120             | 120                 | 120                 |                                        |
| Pervious Area Soil Initial Storage (% of Capacity)             | 30              | 30                  | 30                  |                                        |
| Groundwater Initial Depth (mm)                                 | 10              | 10                  | 10                  |                                        |
| Groundwater Daily Recharge Rate (%)                            | 25              | 25                  | 25                  |                                        |
| Groundwater Daily Baseflow Rate (%)                            | 5               | 5                   | 5                   |                                        |
| Groundwater Daily Deep Seepage Rate (%)                        | 0               | 0                   | 0                   |                                        |
| Stormflow Total Suspended Solids Mean (log mg/L)               | 2.2             | 2.2                 | 2.2                 |                                        |
| Stormflow Total Suspended Solids Standard Deviation (log mg/L) | 0.32            | 0.32                | 0.32                |                                        |
| Stormflow Total Suspended Solids Estimation Method             | Stochastic      | Stochastic          | Stochastic          |                                        |
| Stormflow Total Suspended Solids Serial Correlation            | 0               | 0                   | 0                   |                                        |
| Stormflow Total Phosphorus Mean (log mg/L)                     | -0.45           | -0.45               | -0.45               |                                        |
| Stormflow Total Phosphorus Standard Deviation (log mg/L)       | 0.25            | 0.25                | 0.25                |                                        |
| Stormflow Total Phosphorus Estimation Method                   | Stochastic      | Stochastic          | Stochastic          |                                        |
| Stormflow Total Phosphorus Serial Correlation                  | 0               | 0                   | 0                   |                                        |
| Stormflow Total Nitrogen Mean (log mg/L)                       | 0.42            | 0.42                | 0.42                |                                        |
| Stormflow Total Nitrogen Standard Deviation (log mg/L)         | 0.19            | 0.19                | 0.19                | ]                                      |
| Stormflow Total Nitrogen Estimation Method                     | Stochastic      | Stochastic          | Stochastic          |                                        |
| Stormflow Total Nitrogen Serial Correlation                    | 0               | 0                   | 0                   |                                        |

PLANNING and ENVIRONMENT ACT Warnambool PLANNING SCHEME

**PERMIT NO. PA2201869** 

ORSED PLAN

# ECSEGROUP.

116 Timor Street Warrnambool Vic 3280 T. 03 5562 4930 F. 03 5562 0763 ABN. 59 077 506 506 E. engineers@thecsegroup.com.au thecsegroup.com.au

| Location                                                      | ROOF       | Ground Surface Area | 15 Crawley Carpark |
|---------------------------------------------------------------|------------|---------------------|--------------------|
| Baseflow Total Suspended Solids Mean (log mg/L)               | 1.1        | 1.1                 | 1.1                |
| Baseflow Total Suspended Solids Standard Deviation (log mg/L) | 0.17       | 0.17                | 0.17               |
| Baseflow Total Suspended Solids Estimation Method             | Stochastic | Stochastic          | Stochastic         |
| Baseflow Total Suspended Solids Serial Correlation            | 0          | 0                   | 0                  |
| Baseflow Total Phosphorus Mean (log mg/L)                     | -0.82      | -0.82               | -0.82              |
| Baseflow Total Phosphorus Standard Deviation (log mg/L)       | 0.19       | 0.19                | 0.19               |
| Baseflow Total Phosphorus Estimation Method                   | Stochastic | Stochastic          | Stochastic         |
| Baseflow Total Phosphorus Serial Correlation                  | 0          | 0                   | 0                  |
| Baseflow Total Nitrogen Mean (log mg/L)                       | 0.32       | 0.32                | 0.32               |
| Baseflow Total Nitrogen Standard Deviation (log mg/L)         | 0.12       | 0.12                | 0.12               |
| Baseflow Total Nitrogen Estimation Method                     | Stochastic | Stochastic          | Stochastic         |
| Baseflow Total Nitrogen Serial Correlation                    | 0          | 0                   | 0                  |
| OUT - Mean Annual Flow (ML/yr)                                | 2          | 1.54                | 0.423              |
| OUT - TSS Mean Annual Load (kg/yr)                            | 418        | 305                 | 85.4               |
| OUT - TP Mean Annual Load (kg/yr)                             | 0.843      | 0.622               | 0.174              |
| OUT - TN Mean Annual Load (kg/yr)                             | 5.75       | 4.34                | 1.21               |
| OUT - Gross Pollutant Mean Annual Load (kg/yr)                | 82.2       | 66.4                | 17.8               |
| No Imported Data Source nodes                                 |            |                     |                    |

PLANNING and ENVIRONMENT ACT Warnambool PLANNING SCHEME PERMIT NO. PA2201869 MODIFLED ENDORSED PLAN Sheet 15 of 28 Signed: for MINISTER FOR PLANNING Date: 06 March 2024

Sheet: Source nodes File: Music Results Formatter.xlsm Sheet: 2 of 7 Printed: 30/11/2023

## ESEGROUP.

116 Timor Street Warrnambool Vic 3280 T. 03 5562 4930 F. 03 5562 0763 ABN. 59 077 506 506 E. engineers@thecsegroup.com.au thecsegroup.com.au

| Location                                        | 2 x 50kL Detention/Retention Tanks | <b>Bio-Retention Swale</b> | Π   |
|-------------------------------------------------|------------------------------------|----------------------------|-----|
| ID                                              |                                    | 2                          | 3   |
| Node Type                                       | RainWaterTankNode                  | BioRetentionNode           |     |
| Lo-flow bypass rate (cum/sec)                   |                                    | 0                          | 0   |
| Hi-flow bypass rate (cum/sec)                   | 10                                 | 0 1                        | .00 |
| Inlet pond volume                               |                                    | 0                          |     |
| Area (sqm)                                      | 5                                  | 0                          | 5   |
| Extended detention depth (m)                    |                                    | 1                          | 0   |
| Permanent pool volume (cum)                     | 5                                  | 0                          |     |
| Proportion vegetated                            |                                    | 0                          |     |
| Equivalent pipe diameter (mm)                   | 12                                 | 5                          |     |
| Overflow weir width (m)                         | 1                                  | 0                          | 2   |
| Notional Detention Time (hrs)                   | 0.38                               | 1                          |     |
| Orifice discharge coefficient                   | 0.                                 | 6                          |     |
| Weir coefficient                                | 1.                                 | 7 1                        | 1.7 |
| Number of CSTR cells                            |                                    | 2                          | 3   |
| Total Suspended Solids k (m/yr)                 | 40                                 | 0 80                       | 00  |
| Total Suspended Solids C* (mg/L)                | 1                                  | 2                          | 20  |
| Total Suspended Solids C** (mg/L)               | 1                                  | 2                          |     |
| Total Phosphorus k (m/yr)                       | 30                                 | 0 60                       | 00  |
| Total Phosphorus C* (mg/L)                      | 0.1                                | 3 0.                       | 13  |
| Total Phosphorus C** (mg/L)                     | 0.1                                | 3                          |     |
| Total Nitrogen k (m/yr)                         | 4                                  | 0 5                        | 00  |
| Total Nitrogen C* (mg/L)                        | 1.                                 | 4 1                        | 1.4 |
| Total Nitrogen C** (mg/L)                       | 1.                                 | 4                          |     |
| Threshold hydraulic loading for C** (m/yr)      | 350                                | 0                          |     |
| Extraction for Re-use                           | On                                 | Off                        | _   |
| Annual Re-use Demand - scaled by daily PET (ML) |                                    | 0                          |     |

**PERMIT NO. PA2201869** MODIFIED ENDORSED PLAN Signed: for MINISTER FOR PLANNING Date: 06 March 2024

#### PLANNING and ENVIRONMENT ACT Warnambool PLANNING SCHEME



116 Timor Street Warrnambool Vic 3280 T. 03 5562 4930 F. 03 5562 0763 ABN. 59 077 506 506 E. engineers@thecsegroup.com.au thecsegroup.com.au

| Location                                            | 2 x 50kL Detention/Retention Tanks | <b>Bio-Retention Swale</b> | Π   |
|-----------------------------------------------------|------------------------------------|----------------------------|-----|
| Constant Daily Re-use Demand (kL)                   | 0.6                                |                            |     |
| User-defined Annual Re-use Demand (ML)              | 0                                  |                            | Ц   |
| Percentage of User-defined Annual Re-use Demand Jan | 8.33333333                         |                            |     |
| Percentage of User-defined Annual Re-use Demand Feb | 8.33333333                         |                            |     |
| Percentage of User-defined Annual Re-use Demand Mar | 8.33333333                         |                            |     |
| Percentage of User-defined Annual Re-use Demand Apr | 8.333333333                        |                            |     |
| Percentage of User-defined Annual Re-use Demand May | 8.333333333                        |                            |     |
| Percentage of User-defined Annual Re-use Demand Jun | 8.333333333                        |                            |     |
| Percentage of User-defined Annual Re-use Demand Jul | 8.333333333                        |                            |     |
| Percentage of User-defined Annual Re-use Demand Aug | 8.333333333                        |                            |     |
| Percentage of User-defined Annual Re-use Demand Sep | 8.333333333                        |                            |     |
| Percentage of User-defined Annual Re-use Demand Oct | 8.333333333                        |                            |     |
| Percentage of User-defined Annual Re-use Demand Nov | 8.333333333                        |                            |     |
| Percentage of User-defined Annual Re-use Demand Dec | 8.33333333                         | ,                          |     |
| Filter area (sqm)                                   |                                    |                            | 10  |
| Filter depth (m)                                    |                                    | 0                          | 0.3 |
| Filter median particle diameter (mm)                |                                    |                            | 2   |
| Saturated hydraulic conductivity (mm/hr)            |                                    | 3                          | 60  |
| Voids ratio                                         |                                    | 0                          | 0.3 |
| Length (m)                                          |                                    |                            |     |
| Bed slope                                           |                                    |                            |     |
| Base Width (m)                                      |                                    |                            |     |
| Top width (m)                                       |                                    |                            |     |
| Vegetation height (m)                               |                                    |                            |     |
| Proportion of upstream impervious area treated      |                                    |                            |     |
| Seepage Rate (mm/hr)                                | 0                                  | 3                          | 60  |
| Evap Loss as proportion of PET                      | 0                                  |                            |     |

PLANNING and ENVIRONMENT ACT Warnambool PLANNING SCHEME

Signed: for MINISTER FOR PLANNING Date: 06-March 2024

# ESEGROUP.

116 Timor Street Warrnambool Vic 3280 T. 03 5562 4930 F. 03 5562 0763 ABN. 59 077 506 506 E. engineers@thecsegroup.com.au thecsegroup.com.au

| Location                                       | 2 x 50kL Detention/Retention Tanks | Bio-Retention Swale |
|------------------------------------------------|------------------------------------|---------------------|
| Depth in metres below the drain pipe           |                                    | 0                   |
| IN - Mean Annual Flow (ML/yr)                  | 2                                  | 3.74                |
| IN - TSS Mean Annual Load (kg/yr)              | 418                                | 502                 |
| IN - TP Mean Annual Load (kg/yr)               | 0.843                              | 1.18                |
| IN - TN Mean Annual Load (kg/yr)               | 5.75                               | 9.55                |
| IN - Gross Pollutant Mean Annual Load (kg/yr)  | 82.2                               | 84.2                |
| OUT - Mean Annual Flow (ML/yr)                 | 1.78                               | 2.41                |
| OUT - TSS Mean Annual Load (kg/yr)             | 112                                | 213                 |
| OUT - TP Mean Annual Load (kg/yr)              | 0.382                              | 0.593               |
| OUT - TN Mean Annual Load (kg/yr)              | 4.01                               | 5.6                 |
| OUT - Gross Pollutant Mean Annual Load (kg/yr) | 0                                  | 0                   |
| No Generic treatment nodes                     |                                    |                     |

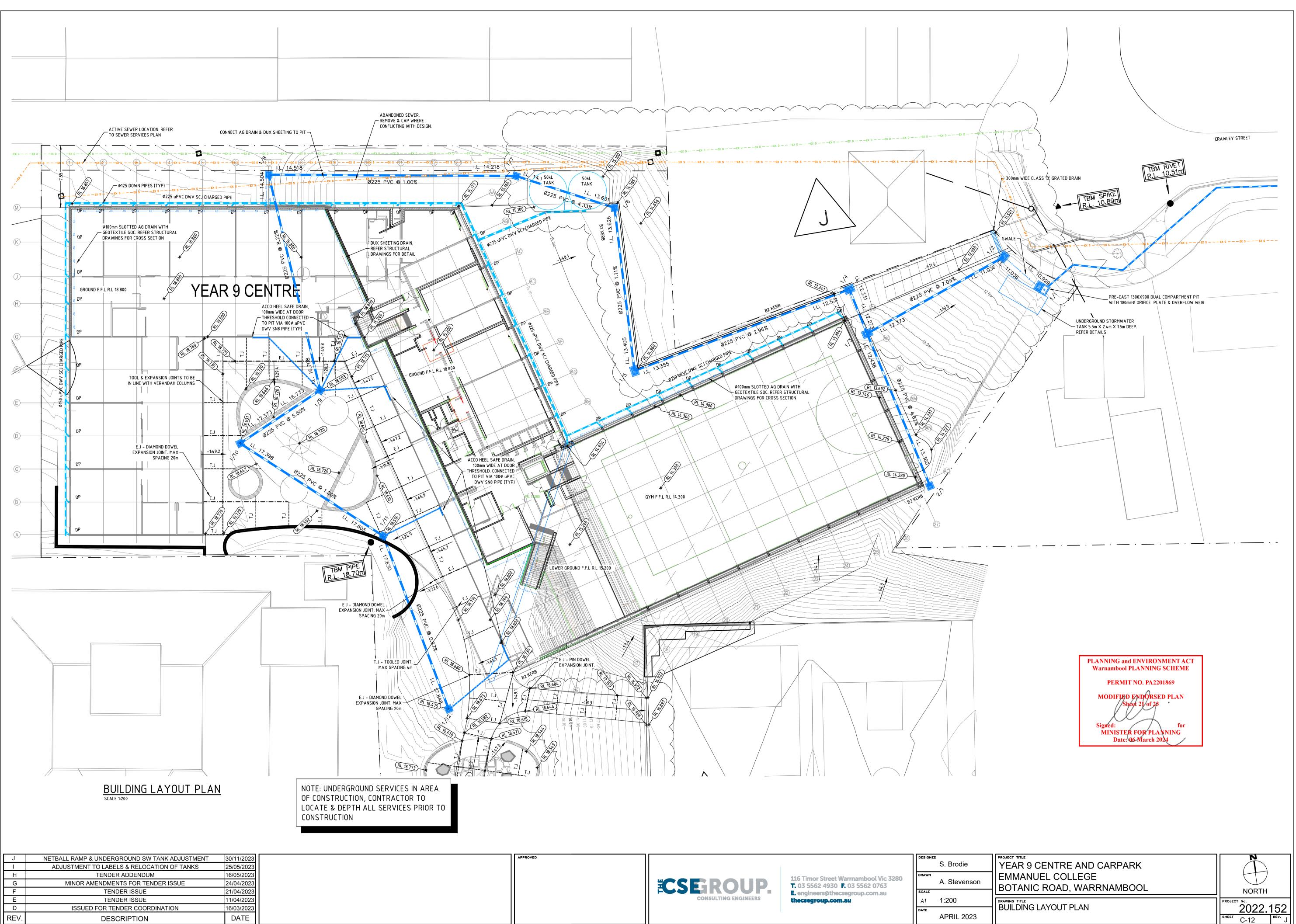
| PLANNING and ENVIRONMENT ACT<br>Warnambool PLANNING SCHEME                       |
|----------------------------------------------------------------------------------|
| <b>PERMIT NO. PA2201869</b>                                                      |
| MODIFLED ENDORSED PLAN<br>Sheet 18 of 28<br>Signed: for<br>MINISTER FOR PLANNING |
| Date: 06 March 2024                                                              |



116 Timor Street Warrnambool Vic 3280 **T.** 03 5562 4930 **F.** 03 5562 0763 **ABN.** 59 077 506 506 **E.** engineers@thecsegroup.com.au **thecsegroup.com.au** 

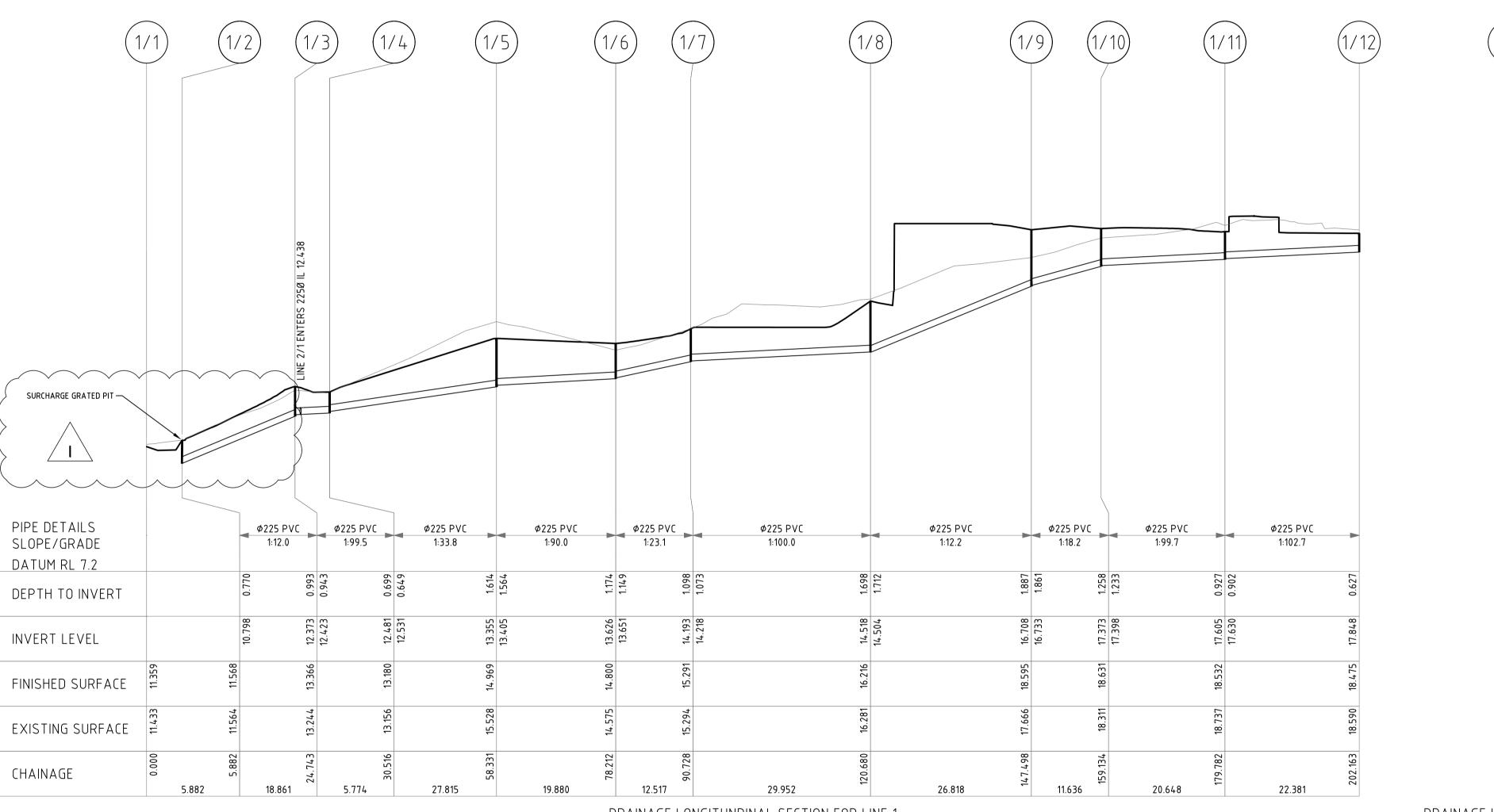
| Location                                       | Receiving Node |
|------------------------------------------------|----------------|
| ID                                             | 4              |
| Node Type                                      | ReceivingNode  |
| IN - Mean Annual Flow (ML/yr)                  | 2.41           |
| IN - TSS Mean Annual Load (kg/yr)              | 213            |
| IN - TP Mean Annual Load (kg/yr)               | 0.593          |
| IN - TN Mean Annual Load (kg/yr)               | 5.6            |
| IN - Gross Pollutant Mean Annual Load (kg/yr)  | 0              |
| OUT - Mean Annual Flow (ML/yr)                 | 0              |
| OUT - TSS Mean Annual Load (kg/yr)             | 0              |
| OUT - TP Mean Annual Load (kg/yr)              | 0              |
| OUT - TN Mean Annual Load (kg/yr)              | 0              |
| OUT - Gross Pollutant Mean Annual Load (kg/yr) | 0              |




# ESEGROUP.

116 Timor Street Warrnambool Vic 3280 T. 03 5562 4930 F. 03 5562 0763 ABN. 59 077 506 506 E. engineers@thecsegroup.com.au thecsegroup.com.au

| Location                                       | Drainage Link |
|------------------------------------------------|---------------|---------------|---------------|---------------|---------------|
| Source node ID                                 | 1             | 5             | 2             | 3             | 6             |
| Target node ID                                 | 2             | 3             | 3             | 4             | 3             |
| Muskingum-Cunge Routing                        | Not Routed    |
| Muskingum K                                    |               |               |               |               |               |
| Muskingum theta                                |               |               |               |               |               |
| IN - Mean Annual Flow (ML/yr)                  | 2             | 1.54          | 1.78          | 2.41          | 0.423         |
| IN - TSS Mean Annual Load (kg/yr)              | 418           | 305           | 112           | 213           | 85.4          |
| IN - TP Mean Annual Load (kg/yr)               | 0.843         | 0.622         | 0.382         | 0.593         | 0.174         |
| IN - TN Mean Annual Load (kg/yr)               | 5.75          | 4.34          | 4.01          | 5.6           | 1.21          |
| IN - Gross Pollutant Mean Annual Load (kg/yr)  | 82.2          | 66.4          | 0             | 0             | 17.8          |
| OUT - Mean Annual Flow (ML/yr)                 | 2             | 1.54          | 1.78          | 2.41          | 0.423         |
| OUT - TSS Mean Annual Load (kg/yr)             | 418           | 305           | 112           | 213           | 85.4          |
| OUT - TP Mean Annual Load (kg/yr)              | 0.843         | 0.622         | 0.382         | 0.593         | 0.174         |
| OUT - TN Mean Annual Load (kg/yr)              | 5.75          | 4.34          | 4.01          | 5.6           | 1.21          |
| OUT - Gross Pollutant Mean Annual Load (kg/yr) | 82.2          | 66.4          | 0             | 0             | 17.8          |


| PLANNING and ENVIRONMENT ACT |
|------------------------------|
| Warnambool PLANNING SCHEME   |
| <b>PERMIT NO. PA2201869</b>  |
| MODIFLED ENDORSED PLAN       |
| Sheet 20/of 28               |
| Signed: for                  |
| MINISTER FOR PLANNING        |
| Date: 06-March 2024          |

Sheet: 7 of 7 Printed: 30/11/2023

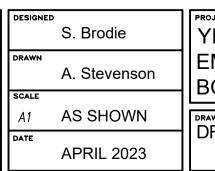


F:\archive\2022\2022.152 Emmanuel College - Year 9 Centre\c3d\2022.152 Y9 C.dwg, 30/11/2023 11:30:15 AM, AutoCAD PDF (General Documentation).pc3

| APPROVED |                      |                                                                          | DESIGNED    | S. Brodie    | P<br>, |
|----------|----------------------|--------------------------------------------------------------------------|-------------|--------------|--------|
|          | ESEGROUP.            | 116 Timor Street Warrnambool Vic 3280<br>T. 03 5562 4930 F. 03 5562 0763 | DRAWN       | A. Stevenson |        |
|          | CONSULTING ENGINEERS | E. engineers@thecsegroup.com.au<br>thecsegroup.com.au                    | scale<br>A1 | 1:200        |        |
|          |                      |                                                                          | DATE        | APRIL 2023   | ľ      |



| Ι    | NETBALL RAMP & UNDERGROUND SW TANK ADJUSTMENT | 30/11/2023 |
|------|-----------------------------------------------|------------|
| Н    | TENDER ADDENDUM                               | 16/05/2023 |
| G    | MINOR AMENDMENTS FOR TENDER ISSUE             | 24/04/2023 |
| F    | TENDER ISSUE                                  | 21/04/2023 |
| E    | TENDER ISSUE                                  | 11/04/2023 |
| D    | ISSUED FOR TENDER COORDINATION                | 16/03/2023 |
| REV. | DESCRIPTION                                   | DATE       |

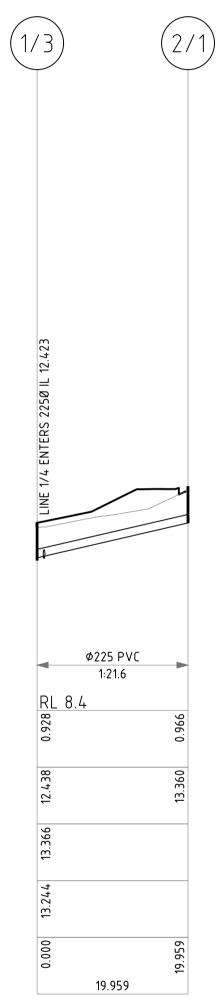

F:\archive\2022\2022.152 Emmanuel College - Year 9 Centre\c3d\2022.152 Y9 C.dwg, 30/11/2023 11:30:27 AM, AutoCAD PDF (General Documentation).pc3



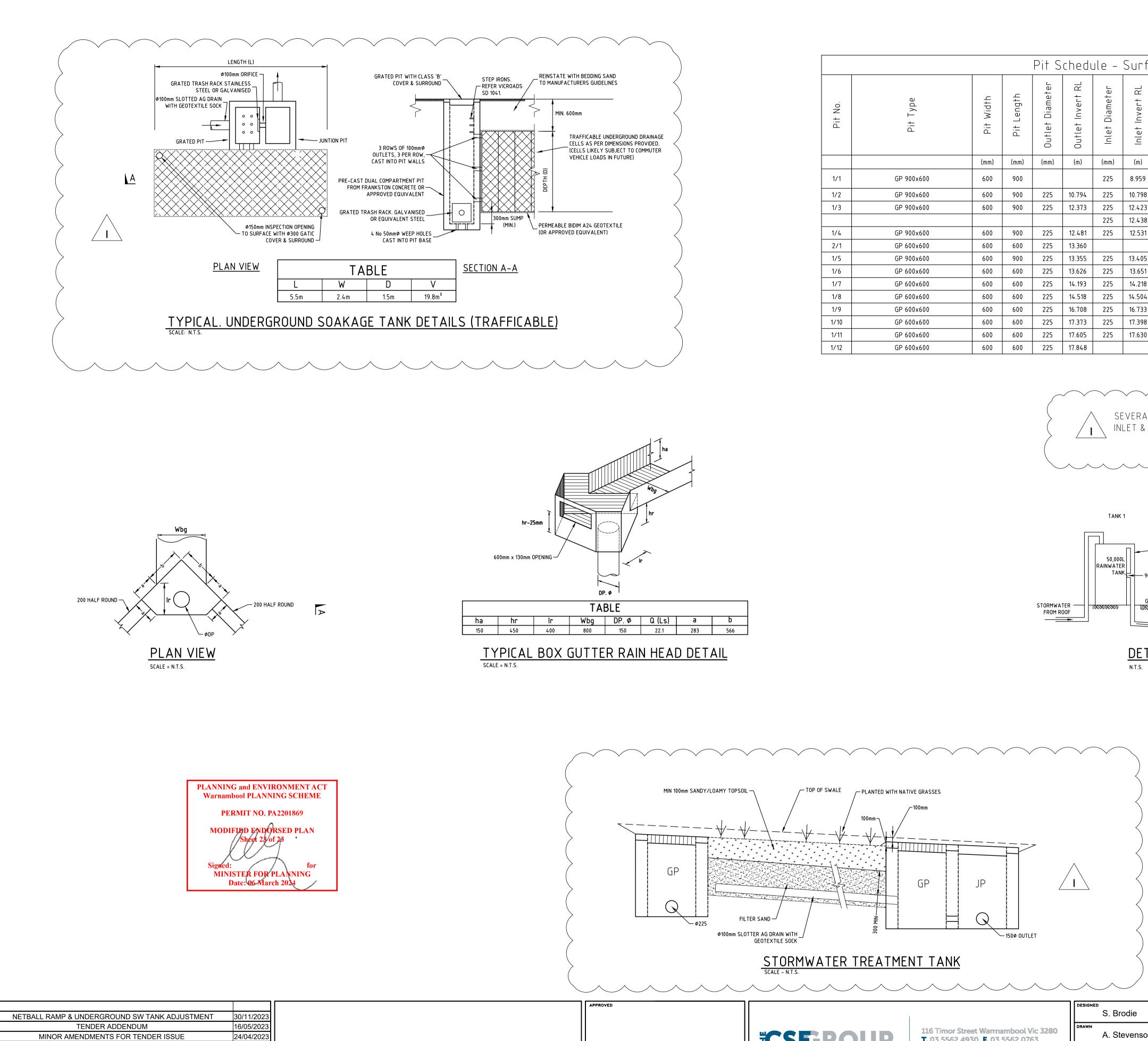
DRAINAGE LONGITUNDINAL SECTION FOR LINE 1

APPROVED

DRAINAGE LONGITUNDINAL SECTION FOR LINE 2




116 Timor Street Warrnambool Vic 3280 T. 03 5562 4930 F. 03 5562 0763


E. engineers@thecsegroup.com.au

thecsegroup.com.au





| PROJECT TITLE                 |                   |
|-------------------------------|-------------------|
| YEAR 9 CENTRE AND CARPARK     |                   |
| EMMANUEL COLLEGE              |                   |
| BOTANIC ROAD, WARRNAMBOOL     |                   |
| DRAWING TITLE                 | PROJECT No.       |
| DRAINAGE LONGITUDINAL SECTION | 2022.152          |
|                               | SHEET C-21 REV. I |



F:\archive\2022\2022.152 Emmanuel College - Year 9 Centre\c3d\Y9C Sheets\2022.152 C-32 SW DETAILS.dwg, 30/11/2023 11:30:44 AM, AutoCAD PDF (General Documentation).pc3

21/04/2023

11/04/2023

16/03/202

DATE

TENDER ISSUE

TENDER ISSUE

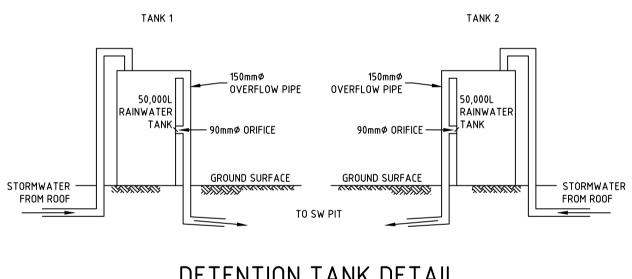
ISSUED FOR TENDER COORDINATION

DESCRIPTION

н |

G

F |


E |

D

REV.

|         | Pit Schedule – Surface SW |           |            |                 |                  |                |                 |           |               |           |             |                                           |
|---------|---------------------------|-----------|------------|-----------------|------------------|----------------|-----------------|-----------|---------------|-----------|-------------|-------------------------------------------|
| Pit No. | Pit Type                  | Pit Width | Pit Length | Outlet Diameter | Outlet Invert RL | Inlet Diameter | Inlet Invert RL | Pit Depth | Pit Lid Level | Easting   | Northing    | Comment                                   |
|         |                           | (mm)      | (mm)       | (mm)            | (m)              | (mm)           | (m)             | (m)       | (m)           | (m)       | (m)         |                                           |
| 1/1     | GP 900x600                | 600       | 900        |                 |                  | 225            | 8.959           | 2.400     | 11.359        | 628984.04 | 5752236.062 | PRE-CAST 1300X900 DUAL<br>COMPARTMENT PIT |
| 1/2     | GP 900×600                | 600       | 900        | 225             | 10.794           | 225            | 10.798          | 0.678     | 11.472        | 628980.43 | 5752240.318 | GRATED SURCHARGE PIT                      |
| 1/3     | GP 900×600                | 600       | 900        | 225             | 12.373           | 225            | 12.423          | 0.993     | 13.366        | 628962.58 | 5752233.911 |                                           |
|         |                           |           |            |                 |                  | 225            | 12.438          |           |               |           |             |                                           |
| 1/4     | GP 900×600                | 600       | 900        | 225             | 12.481           | 225            | 12.531          | 0.699     | 13.180        | 628961.34 | 5752239.550 | CLASS 'D' LID                             |
| 2/1     | GP 600x600                | 600       | 600        | 225             | 13.360           |                |                 | 0.966     | 14.326        | 628967.03 | 5752214.456 |                                           |
| 1/5     | GP 900×600                | 600       | 900        | 225             | 13.355           | 225            | 13.405          | 1.614     | 14.969        | 628934.06 | 5752234.126 | CLASS 'D' LID                             |
| 1/6     | GP 600×600                | 600       | 600        | 225             | 13.626           | 225            | 13.651          | 1.174     | 14.800        | 628934.94 | 5752253.987 | CLASS 'D' LID                             |
| 1/7     | GP 600×600                | 600       | 600        | 225             | 14.193           | 225            | 14.218          | 1.103     | 15.296        | 628923.83 | 5752259.754 |                                           |
| 1/8     | GP 600x600                | 600       | 600        | 225             | 14.518           | 225            | 14.504          | 1.698     | 16.216        | 628894.32 | 5752264.864 |                                           |
| 1/9     | GP 600x600                | 600       | 600        | 225             | 16.708           | 225            | 16.733          | 1.887     | 18.595        | 628896.16 | 5752238.109 |                                           |
| 1/10    | GP 600x600                | 600       | 600        | 225             | 17.373           | 225            | 17.398          | 1.258     | 18.631        | 628885.53 | 5752233.373 |                                           |
| 1/11    | GP 600x600                | 600       | 600        | 225             | 17.605           | 225            | 17.630          | 0.927     | 18.532        | 628900.76 | 5752219.438 |                                           |
| 1/12    | GP 600x600                | 600       | 600        | 225             | 17.848           |                |                 | 0.627     | 18.475        | 628905.10 | 5752197.480 |                                           |





|  | APPROVED | ESEROUP.<br>CONSULTING ENGINEERS | 116 Timor Street Warrnambool Vic 3280<br>T. 03 5562 4930 F. 03 5562 0763 | DESIGNE | S. Brodie   | YEAR 9 CENTRE AND CARPARK                     |                        |
|--|----------|----------------------------------|--------------------------------------------------------------------------|---------|-------------|-----------------------------------------------|------------------------|
|  |          |                                  |                                                                          | DRAWN   | A Stevenson | EMMANUEL COLLEGE<br>BOTANIC ROAD, WARRNAMBOOL |                        |
|  |          |                                  |                                                                          | A1      |             | DRAWING TITLE<br>STORMWATER DETAILS           |                        |
|  |          |                                  |                                                                          | DATE    | APRIL 2023  | STORIVIVATER DETAILS                          | 2022.152<br>SHEET C-32 |



## DETENTION TANK DETAIL