

OUR LADY OF THE IMMACULATE CONCEPTION SUNSHINE PRIMARY SCHOOL

SUSTAINABLE DESIGN ASSESSMENT V1

22ND APRIL, 2021

Date:	22/4/2021
Project Number:	PJ516
Project Title:	Our Lady of the Immaculate Conception
	Sunshine Primary School
To:	Wilson Lau (Clarke Hopkins Clarke)
	Brimbank City Council
From:	Patrick Phelan

Document Title: Sustainable Design Assessment Version 1

Table of Contents	
1. Executive Summary	2
2. Introduction	3
3. Performance Requirements	3
3.1 National Construction Code 2019 Part J – Class Type	3
3.2 BESS Assessment	3
4. ESD Initiatives	5
4.1 Indoor Environment Quality (IEQ)	6
4.2 Energy Efficiency	7
4.3 Water Efficiency	8
4.4 Stormwater Management	8
4.5 Building Materials	9
4.6 Transport	9
4.7 Waste Management	10
4.8 Urban Ecology	11
4.9 Innovation	11
4.10 Construction and Building Management	11
5. Conclusion	12
Appendix A –NCC Part J Assessment	13
National Construction Code 2019 Part J – Non-Residential JV3 Report	13
Introduction – JV3 Report	13
Results JV3 Report	15
Modelling Inputs	16
Appendix B – BESS and STORM Calculations	
B.1 BESS Assessment	
B.2 STORM Report	
B.3 Details of Water Treatment	
B.4 Raingarden Quality, Filtration and Maintenance	
B.5 Locations of Raingardens	
Appendix C – Daylight Assessment	
Appendix D – Sample Building User Guide	28

1. Executive Summary

The purpose of this Sustainable Design Assessment (SDA) is to show the sustainable design initiatives proposed for the Our Lady of the Immaculate Conception Sunshine Primary School Learning Building at the planning stage. The school is located at 32 Station Place, Sunshine. It is subject to the ESD requirements of Brimbank City Council. At the planning stage, the proposed development has been assessed against Brimbank City Council Planning Scheme requirements and the National Construction Code energy efficiency regulations.

Table 1 below is a checklist showing compliance with the various environmentally sustainable design requirements.

Table 1 : SDA Checklist for Our Lady of the Immaculate Conception Sunshine Primary School Learning Building

Item	In Documents / Will be achieved	Required / Recommended by	Reference if Applicable
JV3 Assessment for all conditioned components of the development	\checkmark	National Construction Code and BESS	Refer to Section 3.2 and Appendix A
Water Sensitive Urban Design	\checkmark	Brimbank City Council planning scheme	Refer to Section 4.4 and Appendix B.2.
BESS sustainability tool assessment	\checkmark	Brimbank City Council planning scheme	Refer to Section 3.3 and Appendix B
An SDA describing sustainable initiatives for the development, targets and implementation	\checkmark	Brimbank City Council planning scheme.	Refer to Section 4

The implementation of the initiatives within the Sustainable Design Assessment are the responsibility of the design team, the Our Lady of the Immaculate Conception Sunshine Primary School and the lead and sub-contractors.

Where operational practices are required they will be carried out by the management of the Our Lady of the Immaculate Conception Sunshine Primary School.

2. Introduction

The purpose of this Sustainable Design Assessment (SDA) is to show the sustainable design initiatives proposed for the Our Lady of the Immaculate Conception Sunshine Primary School Learning Building at the planning stage. The school is located at 32 Station Place, Sunshine. It is subject to the ESD requirements of Brimbank City Council. At the planning stage, the proposed development has been assessed against Brimbank City Council Planning Scheme requirements and the National Construction Code energy efficiency regulations.

3. Performance Requirements

3.1 National Construction Code 2019 Part J – Class Type

This development is an education development and contains the following class types (to ultimately be confirmed by the building surveyor):

- Class 9b assembly building

As a part of further iterations of the ESD reports and submissions, JV3 modelling shall show compliance with the NCC Part J.

3.2 BESS Assessment

Built Environment Sustainability Scorecard (BESS) is an assessment tool created by CASBE council which is now widely used to benchmark proposed residential building developments. Based on the initiatives listed in Section 4 below, an initial BESS assessment has been undertaken for the Our Lady of the Immaculate Conception Sunshine Primary School Learning Building design. The results of the BESS assessment are shown on the overleaf.

ENERGY WATER NVIRONMENT	Date: Project Number: Project Title:	22/4/2021 PJ516 Our Lady of the Immaculate Conception Sunshine Primary School
EN VIRONMENT	Document Title:	Sustainable Design Assessment Version 1

Table 2 : BESS Minimum Requirements and Calculated Scores for Our Lady of theImmaculate Conception Sunshine Primary School Learning Building Design

32 Station PI, Sunshine 3020 Sunshine Site area: 11355 m ² · Site type: Non-residential development m ² ·	ę	Project Ident		
Building Floor Area: 1160 m ² · Date of Assessment: 22 Apr 2021 · Version: V5, 1.6.2-B.296 · Applicant: patrick@ewenvironment.com.au	http://bes	Published ss.net.au/project		77-V1
Your BESS score is	% of Total	Category	Score	Pass
	3 %	Management	67 %	
	4 %	Water	50 %	~
+ 5:3%	14 %	Energy	50 %	~
0070	14 %	Stormwater	100 %	~
	11 %	IEQ	67 %	~
	5 %	Transport	60 %	
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%	2 %	Waste	33 %	
50% + 70% + Best Practice Excellence	1 %	Urban Ecology	12 %	
Desi Practice Excellence	0 %	Innovation	0 %	

Refer to Appendix B.1 and B.2 for the BESS and STORM calculations respectively.

Date: Project Number: Project Title:

22/4/2021 PJ516 Our Lady of the Immaculate Conception Sunshine **Primary School** Document Title: Sustainable Design Assessment Version 1

4. ESD Initiatives

The following sections outline the ESD initiatives and management processes that are proposed for the Our Lady of the Immaculate Conception Sunshine Primary School Learning Building development. These are based on consideration of the following categories:

- Indoor Environment Quality (IEQ)
- **Energy Efficiency**
- Water Efficiency
- Stormwater Management .
- **Building Materials** •
- Transport
- Waste Management
- . Urban Ecology
- . Innovation
- **Construction and Building Management**

Each of the above categories have been broken down into sub-categories and then into particular initiatives in the tables below.

The implementation of the initiatives within the Sustainable Design Assessment are the responsibility of the design team, the Our Lady of the Immaculate Conception Sunshine Primary School and the lead and sub-contractors.

Where operational practices are required they will be carried out by the management of the Our Lady of the Immaculate Conception Sunshine Primary School.

4.1 Indoor Environment Quality (IEQ)

Table 3 : IEQ Sub-Categories and Initiatives

IEQ Sub- Categories	Proposed Our Lady of the Immaculate Conception Sunshine Primary School Learning Building Initiatives	Performance Target	Schedule of Initiatives and Responsibility
Daylight	 Habitable spaces achieve 64% of area coverage over daylight factor of 2% 	 BESS benchmarking Refer to Appendix C for daylight calculations 	 Design phase: Architect Construction phase: Builder, window contractor
Hazardous Materials	 No hazardous waste shall be used in construction materials 	 No hazardous waste shall be used in construction materials 	 Implemented as part of construction of design drawings (mechanical contractor responsibility)
Acoustics	 All mechanical equipment shall meet the Australian Standards for noise levels 	 To meet Australian Standards for noise levels 	 Design phase: Architect Construction phase: Builder
Natural Ventilation	 Openable doors and windows. 	 Achieve NCC requirements 	 Design phase: Architect Construction phase: Builder

Date: Project Number: PJ516 Project Title:

22/4/2021 Our Lady of the Immaculate Conception Sunshine Primary School

Document Title:

Sustainable Design Assessment Version 1

4.2 Energy Efficiency

Table 4 : Energy Efficiency Sub-Categories and Initiatives

Energy Efficiency Sub-Categories	Proposed Our Lady of the Immaculate Conception Sunshine Primary School Learning Building Initiatives	Performance Target and Implementation	Schedule of Initiatives and Responsibility
Operating Energy and Building Fabric	 JV3 assessment shows an improvement of over 10% of NCC Part J benchmarks 	 10% improvement on NCC Part J 	 Design phase: Architect Construction phase: Builder
Heating and Cooling	 Cooling shall be provided via VRV systems to all habitable spaces. The nominated COP for the systems is minimum 3.5 	 COP of 3.5 	 Design phase: Architect, mechanical designer Construction phase: Builder, mechanical contractor
Lighting Power Density	 Lighting power density shall be 20% lower than those stipulated by the National Construction Code in Part J6 for all NCC class types components. LED lighting will be implemented 	 Lighting power density of <= 3.5w/m² shall be implemented to meet the 20% reduction target. National Construction Code requirements. BESS benchmarking (refer Appendix B.1) 	 Design phase: Architect, Electrical Designer Construction phase: Electrical Contractor
Domestic Hot Water	 Domestic hot water shall be electric hot water 	 BESS benchmarking (refer Appendix B.1) 	 Design phase: Architect, hydraulic designer Construction phase: Hydraulic contractor
External Lighting	 External lighting will be controlled via a time switch and motion detection 	 BESS benchmarking (refer Appendix B.1) 	 Design phase: Architect, Electrical Designer Construction phase: Electrical Contractor

4.3 Water Efficiency

Table 5 : Water Efficiency Sub-Categories and Initiatives

Water Efficiency Sub-Categories	Proposed Our Lady of the Immaculate Conception Sunshine Primary School Learning Building Initiatives	Performance Target	Schedule of Initiatives and Responsibility
Minimising Amenity Water Demand	 The fittings and fixtures proposed for the development will meet the following Star Ratings under the Water Efficiency Labeling Scheme: Toilets – 4 Star Basin Taps – 6 Star Kitchen Taps – 6 Star 	 As per star rating targets specified. BESS benchmarking (refer Appendix B.1) 	 Design phase: Architect / Hydraulic Designer Construction phase: Builder and hydraulic contractor
Heat Rejection Water	 Air conditioning units shall use air-cooled condenser components. 	 No water to be used in cooling. 	 Design phase: Architect / Mechanical Designer Construction phase: Builder and Mechanical Contractor
Water Efficient Landscaping	 Water efficient garden 	The landscape schedule is yet to be finalised however drought tolerant tree, shrub and grass species shall make up the majority of the landscaping	 Design phase: Architect / Landscape Designer Construction phase: Builder and Landscape Contractor

4.4 Stormwater Management

Table 6 : Stormwater Management Sub-Categories and Initiatives

Stormwater Management Sub- Categories	Proposed Our Lady of the Immaculate Conception Sunshine Primary School Learning Building Initiatives	Performance Target	Schedule of Initiatives and Responsibility
STORM rating	 The calculated STORM rating is 101%. Refer to Appendix B.2 for the STORM report. 	 A minimum of 100% in STORM. 	 Design phase: Architect / ESD Consultant / Hydraulic Designer / Civil Designer / Landscape Consultant Construction phase: Builder, civil contractor, landscape contractor and hydraulic

Date: Project Number: PJ516 Project Title:

22/4/2021

Our Lady of the Immaculate Conception Sunshine **Primary School**

Document Title:

Sustainable Design Assessment Version 1

			contractor
Discharge to Sewer	 Low flow fittings and fixtures shall be used and shall reduce the discharge to sewer. 	 The fittings and fixtures proposed for the development will meet the following Star Ratings under the Water Efficiency Labeling Scheme: Toilets – 4 Star Basin Taps – 6 Star Kitchen Taps – 6 Star 	 Implemented as part of construction of design drawings (contractor responsibility)
Watercourse Pollution	 Raingardens are proposed for the development to meet the watercourse pollution requirements of Council. These raingardens will be designed to have minimal maintenance and sustainable plantations. Refer to Appendix B for the STORM report, rain garden cross-sections and maintenance plan. 	 A minimum of 100% in STORM. 	 Design phase: Architect / ESD Consultant / Hydraulic Designer / Civil Designer / Landscape Consultant Construction phase: Builder, civil contractor, landscape contractor and hydraulic contractor

4.5 Building Materials

Table 7 : Building Materials Sub-Categories and Initiatives

Building Materials Sub-Categories	Proposed Our Lady of the Immaculate Conception Sunshine Primary School Learning Building Initiatives	Performance Target and Implementation	
Storage for Recycling Waste	 Appropriate bin storage space including space for recycling bins has been allocated. 	 Refer to Waste Design Assessment for details. 	 Design phase: Architect Construction phase: Builder
Environmental Toxicity	 Both refrigerants and insulation materials shall be specified to be non-ozone depleting in both composition and manufacture. 	 Zero ozone depleting materials used in both composition and manufacture. 	 Design phase: Architect Construction phase: Builder

4.6 Transport

Bicycle racks on other parts of the site to be used by staff and students.

4.7 Waste Management

Table 8 : Waste Management Sub-Categories and Initiatives

Waste Management Sub- Categories	Proposed Our Lady of the Immaculate Conception Sunshine Primary School Learning Building Initiatives	Performance Target and Implementation	Schedule of Initiatives and Responsibility
Construction Environmental Management Plan	 A construction environmental Design Assessment will be required to be implemented by the lead contractor. 	 Production and implementation of an EMP. 	 Architectural preliminaries to require a CEMP Lead contractor responsibility
Waste Management Plan	 Construction phase environmental Design Assessment to be implemented. 	 Minimum 80% of construction waste to be reused or recycled. BESS benchmarking (refer Appendix B.1) 	 Architectural preliminaries to require a WMP Lead contractor responsibility
Operational Waste	 Green and garden waste and recycling waste shall be separated from general waste and disposed / re-used accordingly 	 Waste initiatives, requirements and instructions for both garden waste and recycling shall be incorporated into the building users guide. 	 Architect in the design phase and schooling in the operation phase

4.8 Urban Ecology

Table 9 : Urban Ecology Sub-Categories and Initiatives

Urban Ecology Sub- Categories	Proposed Our Lady of the Immaculate Conception Sunshine Primary School Learning Building Initiatives	Performance Target and Implementation	Schedule of Initiatives and Responsibility
Landscaped Areas	 Landscaping will be provided as shown in Landscape drawings. 	 The landscape schedule is yet to be finalised however drought tolerant tree, shrub and grass species shall make up the majority of the landscaping 	 Design phase: Architect / Landscape Architect Construction phase: Builder / Landscape Contractor

4.9 Innovation

There are no initiatives that cannot be categorised within the other 9 categories, therefore the innovation category is not applicable.

4.10 Construction and Building Management

Table 10 : Construction and Building Management Sub-Categories and Initiatives

Construction and Building Management Sub-Categories	Proposed Our Lady of the Immaculate Conception Sunshine Primary School Learning Building Initiatives	Performance Target and Implementation	Schedule of Initiatives and Responsibility
Construction Environmental Design Assessment	 A construction environmental Design Assessment will be required to be implemented by the lead contractor. 	 Production and implementation of an EMP. 	 Architectural preliminaries to require a CEMP Lead contractor responsibility
Stormwater Construction Design Assessment	 A stormwater construction Design Assessment will be implemented as part of the construction environmental Design Assessment. 	 Council requirements. 	 Architectural preliminaries to require a SDA Lead contractor responsibility
Building User Guide	 A building user guide to be handed over to all 	 Sustainability and maintenance 	 Lead contractor responsibility

EN ER WATE NVIR	GY R 20 N M E N T	Date: Project Numl Project Title: Document Ti	ber:	Primary Schoo	Conception Sunshine nt Version 1
	owners a construct		inclu user The guide on C Philli User Expe See attao temp Was requi instru gard recyc	mation to be ded in building guide. building user e shall be based ity of Port p's <i>Building</i> <i>'s Guide</i> – <i>ected Content</i> . Appendix E for hment of this late document te initiatives, irements and uctions for both en waste and cling shall be porated into the	

building users guide.

5. Conclusion

The ESD components for the Our Lady of the Immaculate Conception Sunshine Primary School Learning Building development have been proposed with reference to current construction code standards, the industry benchmarking tool BESS and Brimbank City Council Planning Scheme ESD requirements. At the planning stage, the proposed design meets best practice as set out by these items.

Appendix A –NCC Part J Assessment

National Construction Code 2019 Part J – Non-Residential JV3 Report

Introduction – JV3 Report

The purpose of this component of the SDA is to show compliance of the proposed Our Lady of the Immaculate Conception Sunshine Primary School Learning Building design with the energy efficiency requirements of the National Construction Code 2019. This report is for the information of the building surveyor and shows, based on the documentation used in the calculation and associated assumptions, the proposed Our Lady of the Immaculate Conception Sunshine Primary School Learning Building design complies with the requirements and will meet a 21% improvement on heating and cooling based on the assumptions made in this section of the SDA. The overall JV3 assessment shows an improvement of 20%.

The proposed building fabric requirements (assumptions) are shown in the table below. Table 11 : Proposed Building Fabric Requirements

Element of Model	Proposed Model – Design Requirements
Walls	Metal stud walls (450mm spaces) with thickness of BMT1.15 (assumption) - insulation batts of R2.5 (standard insulation between metal studs). No further thermal break required
Floor	Concrete slab on ground with no additional insulation
Roof	Metal roof sheeting. Ceiling insulation of R3.5 (whole system R3.7)
External Glazing	U-values of a maximum of 5.0 (including the frame) and solar heat gain coefficient of 0.5 – single glazing

Compliance has been shown using the verification method JV3. Computer simulation energy modeling has been undertaken using IES Virtual Environment Software Version 2019. Three models were created and each yielded an annual energy calculation for the purposes of comparison. The figure below shows the calculation requirements for the JV3 method with regards to the three models that are required to be produced.

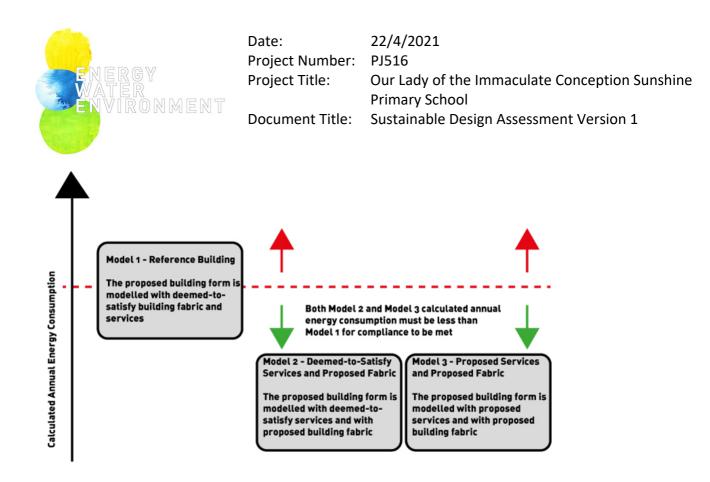


Figure 1 Illustration of the 3 Model Calculation System Required by JV3

ENERGY	Date: Project Nu Project Tit
WATER EN VIRONMENT	Document

Results JV3 Report

Table 1 below shows the calculated annual energy consumption of the Our Lady of the Immaculate Conception Sunshine Primary School Learning Building for all three models.

Table 12 : Calculated Energy Consumption for 3 Models

Model	Calculated Annual Energy Consumption (MWh / annum)
Model 1 – Deemed-to-Satisfy Building Fabric and Services	99.06 (Reference)
Model 2 – Deemed-to-Satisfy Services and Proposed Building Fabric	96.93 (lower than reference)
Model 3 – Proposed Services and Proposed Building Fabric	60.49 (lower than reference)

As Model 2 and Model 3 have a lower energy consumption than Model 1, the design is compliant with the National Construction Code energy efficiency requirements.

The BESS inputs and breakdowns are show below:

BESS Energy Input	OLOTICSPS Calculated Annual Energy Consumption (kWh/annum)
Heating, Cooling & Comfort Ventilation - Electricity Reference fabric & services (kWh/annum)	76,200
Heating, Cooling & Comfort Ventilation - Electricity Proposed fabric & reference services (kWh/annum)	74,066
Heating, Cooling & Comfort Ventilation - Electricity Proposed fabric & services (kWh/annum)	60,452
Gas Heating- Reference fabric & services (MJ/annum)	Not applicable
Gas Heating - Proposed fabric & reference services (MJ/annum)	Not applicable
Gas Heating - Proposed fabric & services (MJ/annum)	Not applicable
Hot Water - Electricity -Reference (MJ/annum)	2,265
Hot Water - Electricity -Proposed (MJ/annum)	2,265
Lighting – Reference (kWh/annum)	22,860
Lighting – Proposed (kWh/annum)	18,288
Peak Thermal Cooling Load Reference fabric and services kW	91
Peak Thermal Cooling Load Proposed fabric and services kW	68

Date: Project Number: Project Title:

22/4/2021 er: PJ516 Our Lady of the Immaculate Conception Sunshine Primary School

Document Title:

Sustainable Design Assessment Version 1

Modelling Inputs

Element of Model	Deemed to Satisfy Model (Not for Construction)	Proposed Model – Minimum Design Requirements
Walls	Lightweight cladding as detailed in Clarke Hopkins Clarke planning documentation. Insulation level of entire wall construction R2.8	Metal stud walls (450mm spaces) with thickness of BMT1.15 (assumption) - insulation batts of R2.5 (standard insulation between metal studs). No further thermal break required
Floor	Concrete slab on ground	Concrete slab on ground with no additional insulation
Roof	Metal roof sheeting. Insulation of entire roof construction R3.2	Metal roof sheeting. Ceiling insulation of R3.5 (whole system R3.7)
External Glazing	Deemed-to-satisfy façade calculator in next section	U-values of a maximum of 5.0 (including the frame) and solar heat gain coefficient of 0.5 – single glazing
Ceilings	Ceiling tiles	As per deemed-to-satisfy model
Internal Partitions	Plasterboard as detailed in Clarke Hopkins Clarke documentation	As per deemed-to-satisfy model
Artificial Lighting	Illumination power densities and usage profile as per deemed-to-satisfy requirements of Part J6 and Specification JV respectively	Design illumination power densities shall be at least 20% lower than NCC requirements
HVAC System	A VRV system for heating and cooling to nominated spaces. The COP for cooling is 2.8. Temperature setpoint is 18-26 degrees Celsius for heating and cooling respectively Air flow rate as required by Part F4	A VRV split system for heating and cooling to nominated spaces. The COP for cooling shall be minimum 3.5. Temperature setpoint is 18-26 degrees Celsius for heating and cooling respectively Air flow rate as required by Part F4
HVAC Operation	HVAC usage profile as per Specification JV	As per deemed-to-satisfy model
Location and Weather File	Melbourne 1971 TRY weather file	As per deemed-to-satisfy model
Domestic Hot Water	Not required for this calculation	
Lift Energy	Not applicable	
Infiltration Rate	Pressurised areas have an infiltration rate of 1 air change per hour, non-pressurised areas have an infiltration rate of 1.5 air changes per hour	As per deemed-to-satisfy model
Occupancy	Occupancy heat gains are 75W/person for sensible heat gain and 55W/person for latent heat gain	As per deemed-to-satisfy model
Appliances	Appliance heat gains and usage profile as per Specification JV	As per deemed-to-satisfy model
Information	Information is based on planning package supplied to Energy Water and Environment by Clarke Hopkins Clarke	As per deemed-to-satisfy model

EN ERGY WATER EN VIRONMENT	Date: Project Number: Project Title: Document Title:	22/4/2021 PJ516 Our Lady of the Immaculate Conception Sunshine Primary School Sustainable Design Assessment Version 1

Deemed to Satisfy Façade Calculator Reference - Ground Floor

Wall U-Value (W/m².K)	Method 2 Glazing U-Value (W/m².K)	SHGC
0.36	4.81	0.36

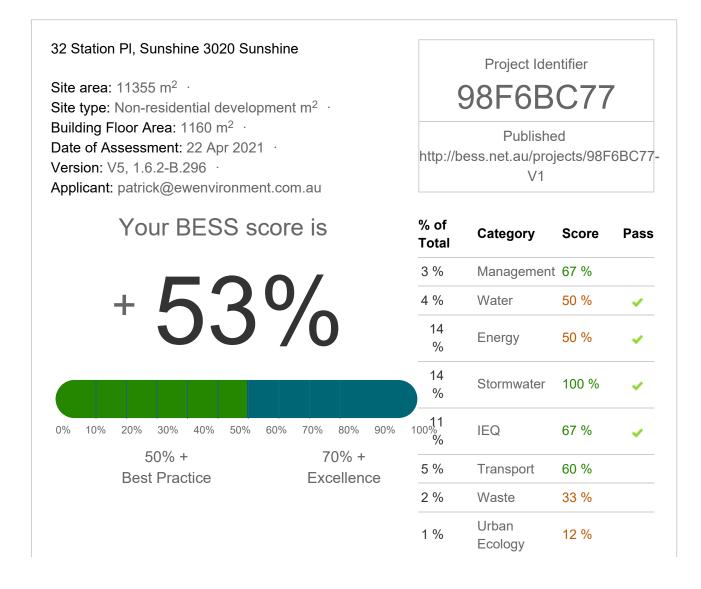
Deemed to Satisfy Façade Calculator Reference – Level 1

Wall U-Value (W/m².K)	Method 2 Glazing U-Value (W/m².K)	SHGC
0.36	5.80	0.46

Appendix B – BESS and STORM Calculations

B.1 BESS Assessment

The full BESS assessment is shown on the overleaf.


BESS Report

This BESS report outlines the sustainable design commitments of the proposed development at 32 Station PI Sunshine VIC 3020. The BESS report and accompanying documents and evidence are submitted in response to the requirement for a Sustainable Design Assessment or Sustainability Management Plan at Brimbank City Council.

Note that where a Sustainability Management Plan is required, the BESS report must be accompanied by a report that further demonstrates the development's potential to achieve the relevant environmental performance outcomes and documents the means by which the performance outcomes can be achieved.

0 % Innovation 0 %

How did this Development Perform in each Environmental Category?

Created with Highcharts 4.0.3Maximum AvailableYour BuildingManagementWaterEnergyStormwaterIEQTransportWasteUrban EcologyInnovation0%10%20%30%40%

Sustainable design commitments by category

The sustainable design commitments for this project are listed below. These are to be incorporated into the design documentation and subsequently implemented.

Management	67% - contributing 3% to overall score
Credit	Disabled Scoped out Score
Management 2.3 Thermal Perform Residential	nance Modelling - Non- 100 %
Management 2.4 Thermal Perform Residential	nance Modelling - Non- 100 %
Management 3.2 Metering	100 %

Management 3.3 Meter	ing	100 9
Management 4.1 Build	ing Users Guide	100 9
Management 2.3 T Residential	hermal Performance Modelling - Non-	100%
Score Contribution	This credit contributes 22.2% towards this section's score.	
Aim	To encourage and recognise developments that have used modelling to inform passive design at the early design stag	
Questions		
	ling been undertaken in accordance with either NCC2019 Se ABERS or Green Star? *	ection J
Yes		
•	hermal Performance Modelling - Non-	100%
•	This credit contributes 11.1% towards this section's score.	100%
Residential		
Residential Score Contribution Aim	This credit contributes 11.1% towards this section's score. To encourage and recognise developments that have used	
Residential Score Contribution Aim Questions	This credit contributes 11.1% towards this section's score. To encourage and recognise developments that have used	
Residential Score Contribution Aim Questions Has a preliminary Sect	This credit contributes 11.1% towards this section's score. To encourage and recognise developments that have used modelling to inform passive design at the early design stag	
Residential Score Contribution Aim Questions Has a preliminary Sect Yes	This credit contributes 11.1% towards this section's score. To encourage and recognise developments that have used modelling to inform passive design at the early design stag	
Residential Score Contribution Aim Questions Has a preliminary Sect Yes	This credit contributes 11.1% towards this section's score. To encourage and recognise developments that have used modelling to inform passive design at the early design stag	e
Residential Score Contribution Aim Questions Has a preliminary Sect Yes Management 3.2 M	This credit contributes 11.1% towards this section's score. To encourage and recognise developments that have used modelling to inform passive design at the early design stag	l e 100%

Questions

Have utility meters been provided for all individual commercial tenants? *

Yes

Management 3.3 Metering

 Score Contribution
 This credit contributes 11.1% towards this section's score.

 Aim
 To provide building users with information that allows monitoring of energy and water consumption

Questions

Have all major common area services been separately submetered? *

Yes

Management 4.1 Building Users Guide

Score ContributionThis credit contributes 11.1% towards this section's score.AimTo encourage and recognise initiatives that will help building users
to use the building efficiently

Questions

Will a building users guide be produced and issued to occupants? *

Yes

Water

50% - contributing 4% to overall score

100%

100%

Credit	Disabled Scoped of	out Score
Water 1.1 Potable water use reduction		40 %
Water 3.1 Water Efficient Landscaping		100 %
Water 4.1 Building Systems Water Use Reduction	✓	N/A

Water Approachs

What approach do you want to use Water?	Use the built in calculation too	ls
Do you have a reticulated third pipe or an on-sit	e water recycling system?	No
Are you installing a swimming pool?		No
Are you installing a rainwater tank?		No

Water fixtures, fittings and connections

Learning Building (Type is Office as School is Not an Option)
Scope out
Scope out
>= 6 Star WELS rating
>= 6 Star WELS rating
Scope out
>= 4 Star WELS rating
Scope out
Scope out
-1

Water 1.1 Potable water use reduction

40%

Score Contribution	This credit contributes 83.3% towards this section's score.
Aim	Water 1.1 Potable water use reduction (interior uses) What is the reduction in total water use due to efficient fixtures, appliances, and rainwater use? To achieve points in this credit there must be >25% potable water reduction. You are using the built in calculation tools. This credit is calculated from information you have entered above.
Criteria	What is the reduction in total potable water use due to efficient fixtures, appliances, rainwater use and recycled water use? To achieve points in this credit there must be >25% potable water reduction.

Calculations

Reference	(kL)	*
1 (010101100	()	

1591

Proposed (excluding rainwater and recycled water use) (kL) *

1016

Rainwater or recycled water supplied (Internal + External) (kL) *

.

Proposed (including rainwater and recycled water use) (kL) *

1016

% Reduction in Potable Water Consumption * $\ ^{\mbox{Percentage }\%}$

36 %

Water 3.1 Water Efficient Landscaping

100%

Score Contribution	This credit contributes 16.7% towards this section's score.
Aim	Are water efficiency principles used for landscaped areas? This includes low water use plant selection (e.g. xeriscaping). Note: food producing landscape areas and irrigation areas connected to rainwater or an alternative water source are excluded from this section.

Questions

Will water efficient landscaping be installed? *

Yes

	uilding Systems Water Use Reduction s scoped out: No water to be used in heat rejection	N/A
	Will the project minimise water use for building systems	such as
Aim	evaporative cooling and fire testing systems?	

Energy

Credit	Disabled	Scoped of	out Score
Energy 1.1 Thermal Performance Rating - Non-Residential			12 %
Energy 2.1 Greenhouse Gas Emissions			100 %
Energy 2.2 Peak Demand			100 %
Energy 2.3 Electricity Consumption			100 %
Energy 2.4 Gas Consumption	~	~	N/A
Energy 3.1 Carpark Ventilation		~	N/A
Energy 3.2 Hot Water			100 %
Energy 3.7 Internal Lighting - Non-Residential			100 %
Energy 4.1 Combined Heat and Power (cogeneration / trigeneration)	~	~	N/A
Use the BESS Deem to Satisfy (DtS) method for Energy?			No

Non-Residential Spaces Energy Profiles

	Learning Building (Type is Office as School is Not an Option)
Heating, Cooling & Comfort Ventilation - Electricity br/> Reference fabric & services	76200.0
Heating, Cooling & Comfort Ventilation - Electricity Proposed fabric & reference services ^{kWh}	74066.0
Heating, Cooling & Comfort Ventilation - Electricity Proposed fabric & services	60452.0
Hot Water - Electricity Reference ^{kWh}	2265.0
Hot Water - Electricity Proposed ^{kWh}	2265.0
Lighting - Reference kWh	22860.0
Lighting - Proposed ^{kWh}	18288.0
Peak Thermal Cooling Load kW	91.0
Peak Thermal Cooling Load kW	68.0

Proposed fabric and services

Score Contribution	This credit contributes 44.4% towards this section's score.
Aim	Reduce reliance on mechanical systems to achieve thermal comform in summer and winter - improving comfort, reducing greenhouse gas emissions, energy consumption, and maintenance costs.
Criteria	What is the % reduction in heating and cooling energy consumption against the reference case (NCC 2019 Section J)?
Calculations	
Total Improvement *	Percentage %

Energy 2.1 Greenhouse Gas Emissions

100%

Score Contribution	This credit contributes 11.1% towards this section's score.	
Aim	Reduce the building's greenhouse gas emissions	
Criteria	What is the % reduction in annual greenhouse gas emissions against the benchmark?	6
Calculations		
Reference Building with	n Reference Services (BCA only) * kg CO2	
80034.3		
Proposed Building with	Proposed Services (Actual Building) * kg CO2	
63971.3		
% Reduction in GHG E	missions * Percentage %	
20 %		
Energy 2.2 Peak D	emand	100%
Score Contribution	This credit contributes 5.6% towards this section's score.	

Aim	Reduce demand on electrical infrastructure during peak co periods	oling
Criteria	What is the % reduction in the instantaneous (peak-hour) c against the benchmark?	emand
Calculations		
Peak Thermal Coolin	g Load - Baseline * ^{kW}	
91.0		
Peak Thermal Coolin	g Load - Proposed * ^{kW}	
68.0		
Peak Thermal Coolin	g Load - % Reduction * Percentage %	
25 %		
Energy 2.3 Electr	icity Consumption	100%
Energy 2.3 Electr	icity Consumption	100%
Energy 2.3 Electr Score Contribution		100%
		100%
Score Contribution	This credit contributes 11.1% towards this section's score.	
Score Contribution	 This credit contributes 11.1% towards this section's score. Reduce consumption of electricity What is the % reduction in annual electricity consumption a 	
Score Contribution Aim Criteria	 This credit contributes 11.1% towards this section's score. Reduce consumption of electricity What is the % reduction in annual electricity consumption a 	
Score Contribution Aim Criteria Calculations	 This credit contributes 11.1% towards this section's score. Reduce consumption of electricity What is the % reduction in annual electricity consumption a 	
Score Contribution Aim Criteria Calculations Reference * ^{kWh}	 This credit contributes 11.1% towards this section's score. Reduce consumption of electricity What is the % reduction in annual electricity consumption annual electricity 	
Score Contribution Aim Criteria Calculations Reference * ^{kWh} 78465.0	 This credit contributes 11.1% towards this section's score. Reduce consumption of electricity What is the % reduction in annual electricity consumption annual electricity 	
Score Contribution Aim Criteria Calculations Reference * ^{kWh} 78465.0 Proposed * ^{kWh} 62717.0	 This credit contributes 11.1% towards this section's score. Reduce consumption of electricity What is the % reduction in annual electricity consumption annual electricity 	

Aim	Reduce consumption of gas	
Criteria	What is the % reduction in annual gas consumption agains benchmark?	st the
Energy 3.1 Carparł	ventilation	N/A
This credit was scoped	out: No car park as part of this project	
Energy 3.2 Hot Wa	ter	100%
Score Contribution	This credit contributes 5.6% towards this section's score.	
Criteria	What is the % reduction in annual hot water system energe and electricity) against the benchmark?	y use (ga
Calculations		
Reference * ^{kWh}		
2265.0		
Proposed * ^{kWh}		
2265.0		
mprovement * Percent	age %	
0 %		
Energy 3.7 Internal	Lighting - Non-Residential	100%
Score Contribution	This credit contributes 11.1% towards this section's score.	
Aim	Reduce energy consumption associated with internal light	ng
Questions		
	mination power density (W/m2) in at least 90% of the area	of the
	meet the requirements in Table J6.2a of the NCC 2019 Vol	1? *

This credit was scoped out: No cogeneration or trigeneration system in use.		
This credit was disable	d: No cogeneration or trigeneration system in use.	
Aim	Reduce energy consumption	
Criteria	Does the CHP system reduce the class of buildings GHG emis by more than 25%?	sions
Stormwater	100% - contributing 14% to overall score	
Credit	Disabled Scoped out	Scor
Which stormwater mo	delling are you using? Melbourne Water STORM tool	100 %
	delling are you using? Melbourne Water STORM tool ormwater Treatment 1	
Which stormwater mo	delling are you using? Melbourne Water STORM tool ormwater Treatment 1 This credit contributes 100.0% towards this section's score.	00%
Which stormwater mod	delling are you using? Melbourne Water STORM tool ormwater Treatment 1	00%
Which stormwater mod Stormwater 1.1 Sto Score Contribution	delling are you using? Melbourne Water STORM tool ormwater Treatment 1 This credit contributes 100.0% towards this section's score. 1 To achieve best practice stormwater quality objectives through reduction of pollutant load (suspended solids, nitrogen and	00%
Which stormwater mod Stormwater 1.1 Sto Score Contribution Aim	delling are you using? Melbourne Water STORM tool ormwater Treatment 1 This credit contributes 100.0% towards this section's score. 1 To achieve best practice stormwater quality objectives through reduction of pollutant load (suspended solids, nitrogen and phosphorus)	00%
Which stormwater mod Stormwater 1.1 Sto Score Contribution Aim Criteria	delling are you using? Melbourne Water STORM tool ormwater Treatment 1 This credit contributes 100.0% towards this section's score. 1 To achieve best practice stormwater quality objectives through reduction of pollutant load (suspended solids, nitrogen and phosphorus) 1 Has best practice stormwater management been demonstrated 1	00%
Which stormwater mod Stormwater 1.1 Sto Score Contribution Aim Criteria	delling are you using? Melbourne Water STORM tool ormwater Treatment 1 This credit contributes 100.0% towards this section's score. 1 To achieve best practice stormwater quality objectives through reduction of pollutant load (suspended solids, nitrogen and phosphorus) 1 Has best practice stormwater management been demonstrated 1	00%
Which stormwater mod Stormwater 1.1 Sto Score Contribution Aim Criteria Questions STORM score achieve	delling are you using? Melbourne Water STORM tool ormwater Treatment 1 This credit contributes 100.0% towards this section's score. 1 To achieve best practice stormwater quality objectives through reduction of pollutant load (suspended solids, nitrogen and phosphorus) 1 Has best practice stormwater management been demonstrated 1	00%
Which stormwater mod Stormwater 1.1 Sto Score Contribution Aim Criteria Questions STORM score achieve	delling are you using? Melbourne Water STORM tool ormwater Treatment 1 This credit contributes 100.0% towards this section's score. 1 To achieve best practice stormwater quality objectives through reduction of pollutant load (suspended solids, nitrogen and phosphorus) 1 Has best practice stormwater management been demonstrated 1	00%

EQ	67% - contributing 11% to overall score	
Credit	Disabled Scoped	out Score
IEQ 1.4 Daylight Acces	ss - Non-Residential	67 %
IEQ 1.4 Daylight A	ccess - Non-Residential	67%
Score Contribution	This credit contributes 100.0% towards this section's score.	
Aim	To provide a high level of amenity and energy efficiency thr design for natural light.	rough
Criteria	What % of the nominated floor area has at least 2% dayligh	nt factor?
64 %		
^{64 %} Γransport	60% - contributing 5% to overall sc	
Fransport Credit	Disabled Scoped	out Score
Fransport Credit Transport 1.4 Bicycle I		
Fransport Credit Transport 1.4 Bicycle I	Disabled Scoped Parking - Non-Residential Parking - Non-Residential Visitor	out Score 100 %
Fransport Credit Transport 1.4 Bicycle I Transport 1.5 Bicycle I Transport 2.1 Electric Y	Disabled Scoped of Parking - Non-Residential Parking - Non-Residential Visitor Vehicle Infrastructure	out Score 100 % 100 %
Fransport Credit Transport 1.4 Bicycle I Transport 1.5 Bicycle I Transport 2.1 Electric ^V Transport 2.3 Motorbik	Disabled Scoped of Parking - Non-Residential Parking - Non-Residential Visitor Vehicle Infrastructure	out Score 100 % 100 % N/A
Fransport Credit Transport 1.4 Bicycle I Transport 1.5 Bicycle I Transport 2.1 Electric ^V Transport 2.3 Motorbik	Disabled Scoped of Parking - Non-Residential Parking - Non-Residential Visitor Vehicle Infrastructure	out Score 100 % 100 % N/A N/A

Criteria	parking been exceeded by at least 50% (or a minimum of 2 where there is no planning scheme requirement)?
Notes	Existing bike parking is provided on site

Questions

Have the planning scheme requirements for employee bicycle parking been exceeded by at least 50% (or a minimum of 2 where there is no planning scheme requirement)? *

Yes

Bicycle Spaces Provided ? *

15

Transport 1.5 Bicycle Parking - Non-Residential Visitor

100%

Score Contribution	This credit contributes 20.0% towards this section's score.
Aim	To encourage and recognise initiatives that facilitate cycling
Criteria	Have the planning scheme requirements for visitor bicycle parking been exceeded by at least 50% (or a minimum of 1 where there is no planning scheme requirement)?
Notes	Existing bike parking is provided on site

Questions

Have the planning scheme requirements for visitor bicycle parking been exceeded by at least 50% (or a minimum of 1 where there is no planning scheme requirement)? *

Yes

Bicycle Spaces Provided ? *

3

Transport 2.1 Electric Vehicle Infrastructure

N/A

This credit was scoped out: Not applicable as no car parking has been provided

Aim To facilitate the expansion of infrastructure to support electric vehicle charging

Transport 2.3 Moto	orbikes / Mopeds	N/A
This credit was scoped of these works	d out: Not applicable as no car parking has been provided	as part
Aim	To encourage and recognise initiatives that help to minim of private passenger cars	ise the use
Waste	33% - contributing 2% to overall s	score
Credit	Disabled Scope	d out Score
Waste 2.2 - Operationa	I Waste - Convenience of Recycling	100 %
Waste 2.2 - Opera	tional Waste - Convenience of Recycling	100%
Score Contribution	This credit contributes 33.3% towards this section's score	9.
Aim	To minimise recyclable material going to landfill	
Notes	As part of existing waste plan recycling facilities are provi	ided
Questions Are the recycling facilit * Yes	ties at least as convenient for occupants as facilities for ger	neral waste?
Urban Ecology 12% - contributing 1% to overall score		
Credit	Disabled Scope	d out Score
Urban Ecology 1.1 Cor	nmunal Spaces	100 %
Urban Ecology 1.1	Communal Spaces	100%

Score Contribution	This credit contributes 12.5% towards this section's score.
Aim	To encourage and recognise initiatives that facilitate interaction between building occupants
Criteria	Is there at least the following amount of common space measured in square meters : * 1m ² for each of the first 50 occupants * Additional 0.5m ² for each occupant between 51 and 250 * Additional 0.25m ² for each occupant above 251?
Notes	External space around the building = 270, there are further spaces internally
Questions Common space provid	ed * Square Metres
270.0	
Calculations Minimum Common Spa	ace Required * Square Metres
71	
nnovation	0% - contributing 0% to overall score

Items to be marked on floorplans

Management 3.2: Individual utility meters annotated	To be printed
Floorplans & elevations - Check meters shall be provided to the building as part of wider school monitoring	
Management 3.3: Common area submeters annotated	To be printed
Floorplans & elevations - Check meters shall be provided to the building as part of wider school monitoring	

Water 3.1: Water efficient garden annotated	To be printed
Floorplans & elevations - Refer to architectural plans	
Stormwater 1.1: Location of any stormwater management systems used in STORM or MUSIC modelling (e.g. Rainwater tanks, raingarden, buffer strips)	To be printed
Floorplans & elevations - Refer to SDA with marked up raingarden location in Appendix B	
Transport 1.4: All nominated non-residential bicycle parking spaces	To be printed
Floorplans & elevations - Refer to site plan which shows existing bike racks	
Transport 1.5: All nominated non-residential visitor bicycle parking spaces	To be printed
Floorplans & elevations - Refer to architectural site plan which shows existing bike racks	
Waste 2.2: Location of recycling facilities	To be printed
Floorplans & elevations - Refer to architectural site plans which shows existing bin store	
Urban Ecology 1.1: Size and location of communal spaces	To be printed
Floorplans & elevations - Refer to architectural plans which show communal external and internal spaces for the building for students	
Documents and evidence	

Management 2.3: Preliminary modelling report	To be printed
Refer to Appendix A of SDA - Refer to Appendix A of SDA	
Management 2.4: Section J glazing assessment	To be printed
Refer to Appendix A of SDA - Refer to Appendix A of SDA	
Energy 1.1: Energy Report showing calculations of reference case and proposed buildings	To be printed
Refer to Appendix A of SDA - Refer to Appendix A of SDA	
Energy 3.7: Provide a written description of the average lighting power density to be installed in the development and specify the lighting	To be printed
type(s) to be used. Refer to SDA - Refer to SDA	
Stormwater 1.1: STORM report or MUSIC model	To be printed

Refer to Appendix B of the SDA - Refer to Appendix B of the SDA

IEQ 1.4: A short report detailing assumptions used and results To be printed

achieved. Refer to SDA Appendix C - Refer to SDA Appendix C

The Built Environment Sustainability Scorecard (BESS) has been provided for the purpose of information and communication. While we make every effort to ensure that material is accurate and up to date (except where denoted as 'archival'), this material does in no way constitute the provision of professional or specific advice. You should seek appropriate, independent, professional advice before acting on any of the areas covered by BESS.

The Municipal Association of Victoria (MAV) and CASBE (Council Alliance for a Sustainable Built Environment) member councils do not guarantee, and accept no legal liability whatsoever arising from or connected to, the accuracy, reliability, currency or completeness of BESS, any material contained on this website or any linked sites.

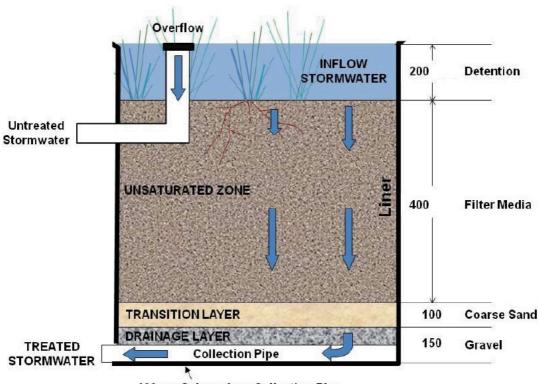
EN ERGY WATER ENVIRONMENT	Date: Project Number: Project Title: Document Title:	22/4/2021 PJ516 Our Lady of the Immaculate Conception Sunshine Primary School Sustainable Design Assessment Version 1
ENVIRUNMENI	Document Title:	

B.2 STORM Report

TransactionID:

Melbourne STORM Rating Report

1139410


Municipality: Rainfall Station: Address:	BRIMBANK BRIMBANK 32 Station Place					
Assessor: Development Type: Allotment Site (m2): STORM Rating %:	Sunshine VIC Patrick Phelan Other 11,355.00 101	3020				
Description	Impervious Area (m2)	Treatment Type	Treatment Area/Volume (m2 or L)	Occupants / Number Of Bedrooms	Treatment %	Tank Water Supply Reliability (%)
Roof Area and Learning Courts	740.00	Raingarden 100mm	9.00	0	117.75	0.00
Deck and Hard Surface Around Sandpit	126.00	None	0.00	0	0.00	0.00

B.3 Details of Water Treatment

Confirming that the water treatment quality standards of Urban Stormwater Best Practice Environmental Management Guidelines, CSIRO 1999 are met by this design. The diagrams on the overleaf show the cross section and isometric section of the rain gardens proposed for the development. The raingardens will be built and maintained in accordance with the document on Melbourne Water's website. Refer to overleaf for attached document.

Raingardens will be maintained half yearly as a part of the body corporate maintenance plan.

100mm Sub-surface Collection Pipe

B.4 Raingarden Quality, Filtration and Maintenance

The filtration of the raingardens will meet the water quality standards as per 1 point in the Green Star Design and As Built V1.3 tool. The following table shows the standards.

Pollutant	Reduction Target (% of the typical urban annual load).			
Foliatan	Α			
Total Suspended Solids (TSS) ¹	80%			
Gross Pollutants	85%	*		
Total Nitrogen (TN) ²	30%			
Total Phosphorus (TP) ²	30%			
Total Petroleum Hydrocarbons ^a	60%	*		
Free Oils ^a	90%			

¹ Load based on the following particulate size distribution (by mass): 20% <20 μm; 20% 20-60 μm; 20% 60-150 μm; 20% 150-400 μm; 20% 400-2000 μm</p>

- ²Load includes particulate and dissolved fraction.
- ^a This requirement is not applicable where the site contains less than a total of 200m2 of uncovered areas where vehicles are likely to transit and/or park e.g. roads, loading docks, refuelling bays, car parking etc.

A raingarden maintenance plan has been specified for the proposed OLOTICSPS Learning Building and is attached on the overleaf.

Date: Project Number: Project Title:

PJ516
 Our Lady of the Immaculate Conception Sunshine
 Primary School

22/4/2021

Document Title:

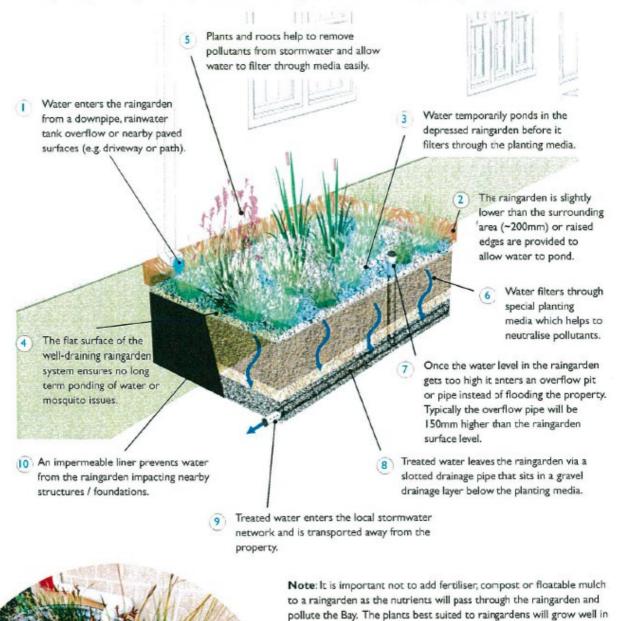
Sustainable Design Assessment Version 1

Tips for undertaking maintenance

Things to look for and how to fix them.

Scour or erosion	Weeds		
Erosion and scour reduce the overall area of treatment by directing flows to certain areas only. Erosion or scour can be re-profiled with hand tools, limiting the damage to adjacent vegetation. If fill material is required to create a flat surface, use an appropriate raingarden planting media mix. If erosion <i>I</i> scour keeps happening at the inlet, place some small rocks where erosion occurs.	Weeds can take over the plants which are needed in the raingarden for treatment. Hand pull weeds and dispose of appropriately. Plant bare patches if needed. Weeding should take place before the plants flower to reduce the likelihood of seed dispersal and further regeneration.		
Rubbish, leaf litter or sediment	Moss or clay on surface		
A lot of rubbish or leaf litter at the inlet or on the surface of the raingarden can affect how well water can enter and filter through the raingarden.This material can be removed easily by hand or with tongs / rakes. Collected litter should be placed into bags or similar for disposal.	Moss or clay on the surface of the raingarden can result in a crust forming which prevents water from filtering and being treated. Use hand tools to scrape off the clay or moss and dispose of appropriately. Check raingarden drains.		
Uneven surface	Raingarden outlets not draining		
An uneven surface may result in some areas not getting wet during rain events, reducing the area of treatment. Depressions or mounds can be flattened with hand tools, limiting the damage to vegetation.	Blockages of outlet pits and pipes can cause a flooding risk for the property as water is unable to leave the raingarden. Blockages are typically caused by sediment, leaf litter and rubbish. Blockages should be removed manually, by hand or with hand tools such as tongs and shovels. Large blockages in pits may require vacuuming or other appropriate machinery.		
Elevated surface level / lots of excess sediment on surface	Impermeable liner		
If sediment has entered the system and has raised the level of the surface, this reduces the amount of water which can be filtered. Use hand tools to remove/scrape sediment from around the plants. Remove sediment from the raingarden and dispose of appropriately.	An impermeable liner (e.g. geotextile or flexible membrane) is sometimes used to ensure water does not move into the surrounding soils. This may be required if the surrounding soils are very sensitive to any added moisture (e.g. sodic soils, shallow groundwater or close proximity to significant structures such as building foundations).		
Unhealthy or dying plants / bare patches	Raingarden holding water on the surface because of blocked planting media		
Good plant cover is critical for raingardens so if plants are looking stressed in dry periods, irrigation may be required. Remove (prune) any areas affected by disease or pests. If the plants are dying and have created bare patches, the plants need to be replaced. If the plants keep struggling, replace with a plant type which is growing well in the raingarden.	Generally raingardens should be able to filter water at a rate of ~100mm per hour. If the surface of the raingarden is clogged (by clay or moss etc.) or the underlying filter media i not appropriate then water will not be able to drain through		

Date: Project Number: Project Title: 22/4/2021


PJ516 Our Lady of the Immaculate Conception Sunshine Primary School

Document Title:

Sustainable Design Assessment Version 1

Raingarden Maintenance

This diagram depicts an in-ground raingarden. Raised bed raingardens are also common (refer to photograph).

entering the raingarden.

WWW.EWENVIRONMENT.COM.AU ABN:50 800 554 305

the planting media and take nutrients for their growth from the water

Date: Project Number: Project Title:

PJ516

22/4/2021

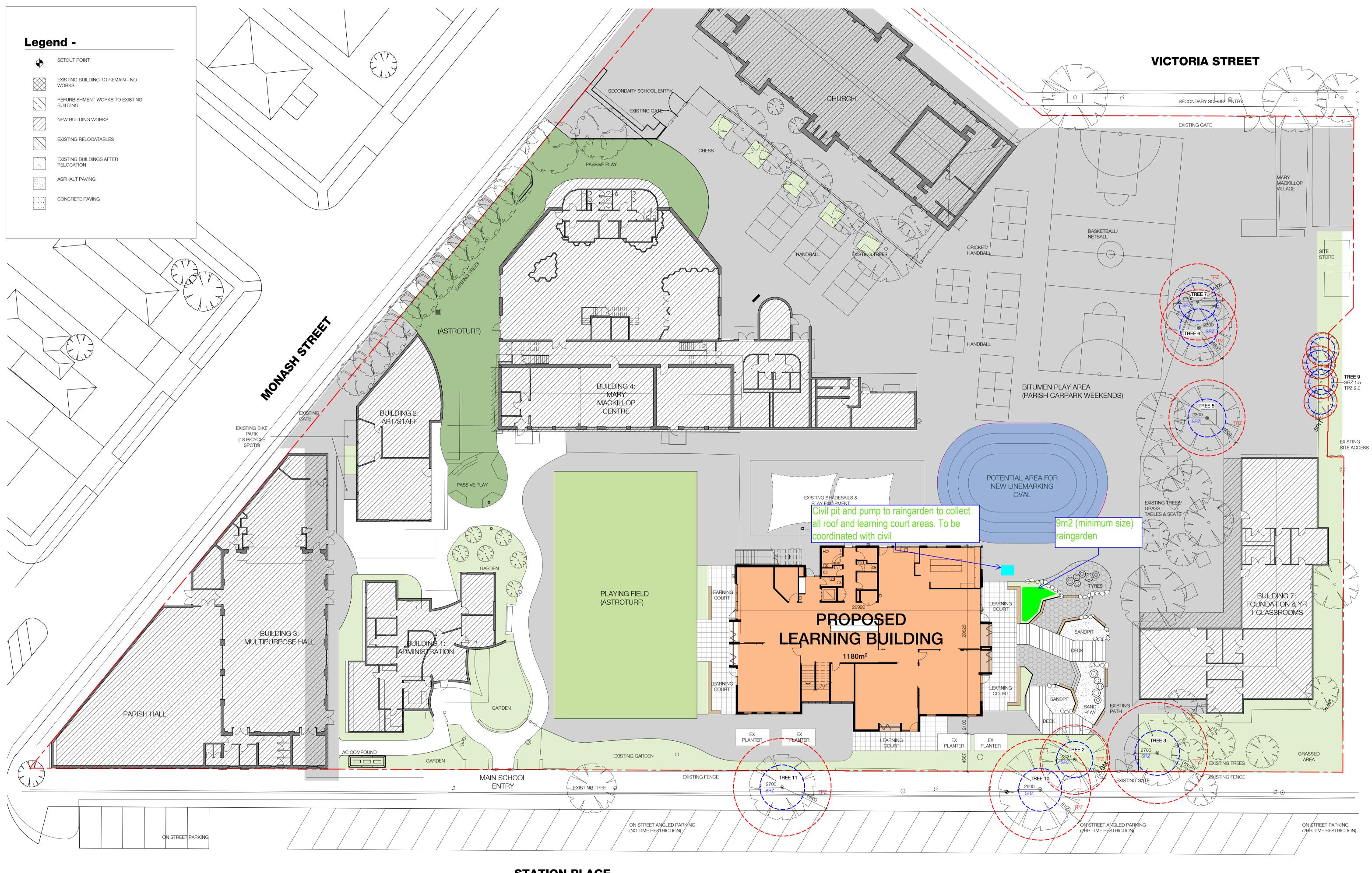
Our Lady of the Immaculate Conception Sunshine Primary School

Document Title:

le: Sustainable Design Assessment Version 1

Maintenance Checklist

The property owner is responsible for checking the maintenance items in this checklist at the recommended frequency at the bottom of the table. The maintenance log at the bottom of the page should be filled in once each maintenance check is complete. Upkeep of this maintenance log should continue throughout the life of the raingarden.



ltem	Raingarden ele	ement	Inspection item				Y/	N	Likely n	naintenano	e task	
_	Raingarden inl		Is there scor raingarden?	Is there scour or erosion where water enters the raingarden?				Re-profile with hand tools, place gravel or stones at the inlet.				
U	Naingarden ini	ec	Is there rubbish, leaf littler or sediment blocking the inlet?						Remove by hand and dispose responsibly.			
2	Raingarden su level	rface	Is the level of the raingarden surface sitting less than 5 cm below the raingarden edges/borders?						Remove sedimen: from the surface so it is sitting about 10-20 cm belo surrounding areas.			
3	Raingarden temporary der	tention	Is there moss or clay on the surface of the raingarden which seem to be slowing the filtration of flows?						Remove the crust from the top of the raingarden and check water will filter through exposed media.			
(4)	Raingarden su	Are there areas which appear to be higher and are not getting wet during rain events?						Smooth out surface so it is flat with				
U.	Namgar Gen Su	nace	Are there areas which have been eroded away or scoured?						hand tools.			
			Are the plants looking unhealthy or dying?					Prune diseased sections, irrigate and/ or replace dead plants. If plants				
5	Plants	Are there bare patches forming between plants? keep dying, repl type which is do fertilizer to imp this will pollute				hich is doir r to impro	g well. Do ve plant he	not use alth as				
			Are there weeds present? Remove weeds by han responsibly.									
6	Planting media	L I		Is the raingarden holding water for more than a couple of hours after the rain has stopped?					Remove and replace the top 100 mm of planting material (loamy sand).			
7	Overflow pit /	pipe		Is there anything blocking the top of the overflow pit / pipe preventing water from entering?					Remove blockages and dispose responsibly.			
8	Underdrainag	•	Is there rain draining to the bottom of the raingarden following heavy rain?						Flush the underdrain or uncover it to check for blockages.			
۲	Stormwater n connection	etwork	Is there water ponding in the overflow pit or pipe and not entering the stormwater network?						Remove blockages and dispose responsibly.			
Maint	enance frequen	cy										
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug		Sep	Oct	Nov	Dec
			x							×		

B.5 Locations of Raingardens

Refer to attached architectural Ground Floor Plan for locations and notes on raingardens.

Revision/Issue P 1 Preliminary P 2 Issued for Coordination Date 04.03.2021 06.04.2021

Clarke Hopkins Clarke

ClarkeHopkinsClarke

Melbourne 115 Sackville Street Collingwood Victoria 3066 Telephone (03) 9419 4340 Email studio@chc.com.au www.chc.com.au

www.chc.com.au

Use figured dimensions in preference to scale. Verify dimensions at job before shop fabrication. Read drawing in conjunction with specification.

A1

STATION PLACE

Scale

Date

Drawn

Architect

Project Our Lady of The Immaculate Conception Parish Primary School, 32 Station Place, Sunshine

Drawing No.

Drawing Proposed Site Plan

200174/TP02 P2

ClarkeHopkinsClarke

Appendix C – Daylight Assessment

A daylight assessment has been carried out for the Our Lady of the Immaculate Conception Sunshine Primary School Learning Building using the IES VE Software.

The analysis showed that for the primary usable spaces the percentage of area achieving a daylight factor of 2% or above was 64% of area.

The following table shows the daylight factor for each level and the total weighted daylight factor.

Area	Area of Primary Space Above DF 2% (m ²)	Area of Primary Space (m ²)	% Area of Primary Space Above DF 2%
Ground	307	509	60.3%
Level 1	348	507	68.0%
		Weighted Average	64.4%

The assumptions mate for the daylight analysis are shown in the following table.

Element	Description
Weather file	ACADS-BSG/CSIRO Melbourne Regional Office Test Reference Year
Sky	Uniform Design Sky
Software	Integrated Environmental Solutions – Virtual Environment 2019 with Radiance Toolkit
Working Plane	Daylight factors taken at floor level
Floor / Roof	0.3
Reflectance	0.0
Wall Reflectance	0.7
Ceiling Reflectance	0.8
Ground Reflectance	0.2
External Wall Reflectance	0.5 (Medium paint colour)
External Glazing VLT	Single glazing with VLT 58%
	Note- this is similar to the glass selected to meet the energy efficiency requirements for these spaces
Internal glazing VLT	Not Applicable

EN ER GY WATER EN VIRONMENT	Date: Project Number: Project Title: Document Title:	22/4/2021 PJ516 Our Lady of the Immaculate Conception Sunshine Primary School Sustainable Design Assessment Version 1
and the second se		-

Appendix D – Sample Building User Guide

The sample building user guide – *Building User's Guide – Expected Content* has been attached on the overleaf.

Building User's Guide -

Expected Content

City of Port Phillip ASSIST 🕲 03 9209 6777 🕟 www.portphillip.vic.gov.au/contact_us.htm 🏚 🕇 🖸 🍑

General Building Information

Building Orientation

Location of the building on a map with surrounding services (train stations, tram/bus stations, post office, shopping centres, schools and childcare centres).

Brief description of the building.

Building's access

Location of bike, motorcycle and car parking, including all modes of visitors' parking on a site plan + site specific pictures.

Communal spaces

Location and description of communal and shared spaces on architectural/ landscape drawings.

Disabled facilities

Provide information on ramp locations, disabled toilets, lifts, disabled refuge areas.

Security

CCTV

Provide information on the CCTV system, operation and purpose.

Access control

Provide description and pictures of security systems to control access to the building.

Building Environment

Heating:

Description of the operating and maintenance of the heating system.

A picture of the installed system is to be provided.

Receipts, warranties and product users notice are to be annexed to the Building user's guide.

Cooling and ventilation

Description of the operating and maintenance of the cooling/ventilation system.

A picture of the installed system is to be provided.

Receipts, warranties and product users notice are to be annexed to the Building user's guide.

Lighting

Description of the lighting system (detection lighting, passive infrared lighting, etc.).

Receipts, warranties and product users notice are to be annexed to the Building user's guide.

External shading

Description, operation and purpose of the external shading device.

Picture of the installed device and operating system.

Water management

Cold Water system

Description of WC water flush systems.

Description of the potable water system.

Description of the grey water system.

Description of the purple water system (tap and third pipe location).

Description of the black waster system (pipe location).

Water tanks location, description, picture and maintenance.

Receipts, warranties and product users notice of the water tank are to be annexed to the Building user's guide.

Hot Water System

Description, operation, location and maintenance of the Hot Water System.

Receipts, warranties and product users notice are to be annexed to the document.

Water reduction strategy

Description and location of the metering system.

WELS certificate of water appliances.

Picture of the water meter, submeters.

Power

Energy production

PV: location and maintenance of PVs systems.

Receipts, warranties and product users notice are to be annexed to the document.

Energy saving strategy

Description and location of energy meters and systems.

Cleaning and Waste Management

Cleaning of windows, facades and common areas.

Required cleaning frequency and description of products to be used.

Waste management

Location and pictures of bins and waste facilities, including organic waste disposal systems and opportunities within the development where compost can be used.

Waste reduction strategy

Compost guide.

Soft Plastic strategy.

E Waste.

Open space management

Description of the open space (landscape plan), irrigation and maintenance strategies.

Picture of the open space and the irrigation systems to be provided.

Emergency Information

Fire safety

Description of the fire/smoke alarm system and maintenance.

Location of Emergency exist and assembly points on a site plan.

Accident/incident reporting

Contact details of appropriate emergency services.

Location of first kit aid + picture of kit.

