

Proposed Simonds College Redevelopment

235-273 Victoria Street, West Melbourne

Stage 2 ESD Statement

November 2021

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.
The document must not be used for any purpose which may breach any convrioht

PREPARED BY:
Sustainable Development Consultants
2nd Floor, 555 Riversdale Rd.
Camberwell VIC 3124
T: (03) 98829967 F: (03) 98829969
info@sdconsultants.com.au

Table of Contents

1. Introduction...
1.1 Site Description .. 4
1.2 Development Summary.. 5
1.3 City of Melbourne Requirements ... 8
1.4 ESD Assessment Tools ... 9
1.4.1 Green Star Design \& As Built v1.3... 9
1.4.2 Model for Urban Stormwater Improvement Conceptualisation V6 (MUSIC)... 9

2. Sustainability Initiatives .. 10
2.1 Building Management.. 11
2.2 Indoor Environment Quality... 13
2.3 Energy Efficiency ... 15
2.4 Transport .. 17
2.5 Water Resources \& Stormwater Treatment... 19
2.6 Building Materials... 21
2.7 Urban Ecology.. 23
2.8 Waste Management.. 24
3. Conclusion.. 25

Appendix 1 - Green Star Design \& As Built Potable Water Calculator .. 26
Appendix 2 - MUSIC Assessment and WSUD Report... 34
Appendix 3 - Green Star Design \& As Built Scorecard .. 58
Appendix 4 - Green Star VOC and Formaldehyde Limits .. 65

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.
The document must not be used for any purpose which may breach any
convrioht

Version	Date of Issue	Description	Author	Approved
V1	12-11-2021	For Council Approval	PC	BdW

1. Introduction

This ESD Statement has been prepared to assist the design, construction and operation of the proposed Stage 2 Simonds College redevelopment at 235-273 Victoria Street, West Melbourne.

Sustainable Development Consultants have assessed the proposed development and provided input to the design team. This SMP captures initiatives necessary to ensure that the development meets the sustainability requirements of Melbourne City Council, as outlined in Section 1.3 of this report.
This document has been prepared by Sustainable Development Consultants with reference to the architectural drawings prepared by Chandler Architecture.

1.1 Site Description

The site at 235-273 Victoria Street, West Melbourne is on the north-western fringe of the CBD. It is bounded by Chetwynd, Victoria, William and Howard Streets, and bordered by residential properties to the south. The site is within a predominantly mixed-use locality, with commercial and residential properties opposite on Chetwynd Street.

Figure 1: Location of 235-273 Victoria Street, West Melbourne in relation to the Melbourne CBD (Source: Google Maps)

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.

purpose which may breach any
ennvrioht

ADVERTISED
PLAN

Figure 2: Aerial image of the development site at 235-273 Victoria Street, West Melbourne (Source: Nearmap, mark-up by SDC)

1.2 Development Summary

Set out in Table 1 below is a development summary for this project.
Table 1: Development Summary

Development Information	
Total Site Area	4,098m².
Stage 2 Site Area	$1,878 \mathrm{~m}^{2}$ Buildings B \& C to be demolished. Construction of Building 2 (5 levels, all new). Gross Floor Area (GFA) approx. 6,169m².

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.
The document must not be used for any purpose which may breach any
ronvrioht

This copied document to be made available
The area of each stage of the redevelopment has been marked up in Figures 3
Key to Figure 3:
Stage $1=$ Red, $1,627.7 \mathrm{~m}^{2}$
Stage $2=$ Blue, $1,877.9 \mathrm{~m}^{2}$
Stage 3 = Yellow, $592.4 \mathrm{~m}^{2}$
4. for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.
The document must not be used for any purpose which may breach any

Figure 3: Stages 2 \& 3 Site Delineation

Figure 4: Stage 1 Site Delineation

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any
ennurioht

1.3 City of Melbourne Requirements

The City of Melbourne is committed to becoming an environmentally sustainable city. Critical to achieving this commitment is for development to meet appropriate environmental design standards, including the eco-city goals and standards as detailed in Future Melbourne Community Plan 2008.

The City of Melbourne expects that this project should achieve best practice in environmentally sustainable development from the design stage through to construction and operation. To comply with the Local Planning Scheme including Clause 22.19 Energy, Water and Waste Efficiency, this project is required to satisfy the objectives as set out within the following categories, where applicable:

- Energy Efficiency
- Water Resources
- Indoor Environment Quality
- Stormwater Management
- Transport
- Waste Management
- Urban Ecology

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any
convrioht

This requires an Environmentally Sustainable Design (ESD) Statement which demonstrates how for this project, the relevant policy objectives will be achieved.

Based on Stage 2 GFA of over $5,000 \mathrm{~m}^{2}$, this portion of the development is required to achieve:

- 5 points for the Ene-1 credit under a current version of the Green Building Council of Australia's Green Star - Education rating tool or equivalent; and
- 3 points for the Wat-1 credit under a current version of the Green Building Council of Australia's Green Star - Education rating tool or equivalent, and
- A Waste Management Plan prepared in accordance with the current version of the City of Melbourne's Guidelines for Waste Management Plans, and
- A 5 Star rating under a current version of Green Star - Education rating tool or equivalent.

The City of Melbourne also requires that this project address the following relevant planning scheme provisions:

- Clause 19.03-3S Integrated Water Management
- Clause 21.05 Environment and Landscape Values
- Clause 22.23 Stormwater Management (WSUD)
- Clause 52.17 Native Vegetation
- Clause 52.34 Bicycle Facilities
- Clause 53.18 Stormwater Management in Urban Development
- Clause 54.03 Site Layout and Building Massing
- Clause 56.07 Integrated Water Management

In July 2019, the City of Melbourne declared a climate emergency and as part of this, are committed to enhanced Environmentally Sustainable Design.

ADVERTISED PLAN

1.4 ESD Assessment Tools

There are several calculators and modelling programs available in Victoria to assess proposed developments against benchmarks for ESD, as set by the Victorian government, local councils and the Building Code of Australia.

For this project, the assessment tools that have been adopted for this project are set out below.

1.4.1 GREEN STAR DESIGN \& AS BUILT V1.3

The Green Star Design \& As-built tool was created by the Green Building Council of Australia (GBCA) to help assess and benchmark new developments against a thorough set of criteria, specifically designed to reward best practice and innovative sustainable design approaches. The tool includes nine (9) different categories which cover all areas of building design and some ongoing operation. These are:

- Management;
- Energy;
- Indoor Environment Quality;
- Water;
- Materials;
- Transport;
- Land Use and Ecology;
- Emissions; and
- Innovation.

The levels of achievement in this tool are defined as: 4 star Green Star being "Best Practice", 5 star being "Australian Excellence", and 6 star being "World Leader". This project is aiming to achieve a benchmarked " 5 -star Green Star rating", which requires a minimum of 60 points.
The results of the Green Star benchmark assessment can be found in Appendix 3 - Green Star Design \& As Built Scorecard.

1.4.2 MODEL FOR URBAN STORMWATER IMPROVEMENT CONCEPTUALISATION V6 (MUSIC)

MUSIC is an urban stormwater modelling software that was developed to provide an easy-to-use universal treatment model for all urban stormwater systems. The tool is capable of simulating stormwater runoff, its treatment and quality during a rainfall event for catchment areas up to $100 \mathrm{~km}^{2}$ and can be used to assess and inform on stormwater treatment measures necessary to ensure the design of urban development meet required Water Sensitive Urban Design Standards.
Details and results for the MUSIC assessment completed for the proposed development can be found in Appendix 2 - MUSIC Assessment and WSUD Report. Note that the MUSIC assessment was completed with a site-wide approach, encompassing Stages $1-3$ within the one assessment.

1.5 Overview of Assessments

The following ESD assessments are being undertaken by SDC in response to the planning requirements:
Overall: Project-wide stormwater assessment, using eWater's MUSIC tool, to gauge requirements to achieve Urban Stormwater Best Practice Environmental Guidelines as stipulated by CSIRO (1999).

Stage 2: Building 2

- ESD Statement detailing the suite of environmentally sustainable design measures proposed for implementation.
- 5-star Green Star Design \& As Built v1.3 benchmarking assessment.
- Green Star Design \& As Built v1.3 Potable Water Calculator to gauge requirements to achieve a minimum of 3 points.
- Energy Modelling to enable the Green Star Design \& As Built v1.3 Greenhouse Gas Emissions Calculator to be completed, to achieve a minimum of 5 points.

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Phammimg anrd Envirivimrent Act 1987. The document must not be used. for any purpose which may breach any renvrioht

2. Sustainability Initiatives

The following sections outline the initiatives that will be incorporated into the development throughout its design, construction and operation. Initiatives that are included to contribute towards the Green Star benchmark have a credit reference number next to them, e.g. (Building Commissioning 2.2). Some initiatives without the Green Star reference have also been included as they also contribute to the overall sustainability of the development.

The following sections, as well as nominating the sustainability initiatives, also identify the party/parties responsible for implementation of the initiative, and the stage at which implementation will be demonstrated.

The following are the broad project stages:

1	Design Development	- Consultants develop conceptual design drawing to a detailed stage suitable as a basis for preparing working drawings - Integration of architectural, services, structure and site attributes - Checking compliance with all statutory requirements, codes and standards - Arranging special surveys or reports as required
2	Construction Documentation	- Architectural and services drawing sets completed - All specialist reports completed - All necessary planning and building consents obtained as required by authorities
3	Construction	- All work carried out onsite - site preparation, construction, alteration, extension, demolition - Purchase of all materials / certification - Evidence gathering from subcontractors - Commissioning
4	Post Occupancy	- Operation and Maintenance - Education - Building Users Guides

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any
ennvrioht

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as

2.1 Building Management

The development will aim to promote the adoption of environmental manadementinning and Endires at diferent stagesctif 1987. the project - not just in the project design stage.

Design Requirements

The document must not be used for any purpose which may breach any
Responsibility \&rnnvPioibat Stage Implementation

Green Star Accredited Professional (GSAP) (1.1)
One of the project's consultants will be a GSAP. They will advise through the design and construction phases of the project.

ESD	Design Consultant Development

Environmental Performance Targets (2.0)
Documented targets will be set for the environmental performance of the building. These targets (energy and water) will be monitored and reported on to help guide and improve on performance in the nominated areas.

ESD
Consultant / Services Consultants

Design Development

Services and Maintainability Review (2.1)
An Independent Commissioning Agent will facilitate a review of the design (prior to construction) and create a checklist of items reviewed and recommendations made. This will require input from Simonds College, being responsible for the ongoing operations/ maintenance of the project post construction.

Building Commissioning (2.2)

All building systems should be fully commissioned in accordance with CIBSE or ASHRAE codes before handover. All services proposed for the development will be reviewed prior to install for the servicing and maintainability requirements, they will be fully commissioned in accordance with best practice commissioning guidelines.

Builder /	Design
Services	
Consultants /	
ICA	Development Commissioning

Building Systems Tuning (2.3)

All building systems will need to be tuned following practical completion and prior to occupation. The commitment must include monthly adjustment and measurements with quarterly reporting for the first 12 months following occupation, and a review of building system manufacturer warranties.

Independent Commissioning Agent (2.4)

An Independent Commissioning Agent (ICA) is to be appointed to advise, monitor, and verify the commissioning and tuning of the nominated building systems throughout the design, tender, construction, commissioning and tuning phases.

Implementation of a Climate Adaptation Plan (3.1)

A Climate Adaptation Plan will be prepared as a means of future-proofing the development to be prepared to handle a changing climate over two timescales (i.e. 2030, 2070), and specific design responses which have been put in place to adapt for the future.
Any high-risk items identified will be required to be addressed in the final design of the building.

Building Information (4.1)

A comprehensive operations and maintenance manual will be developed and made available to the facilities management team.
A Building Log Book will be developed by the Builder, in line with CIBSE TM31: Building Log Book Toolkit.
A Building Users Guide to be prepared, outlining relevant and current building user information. It should take into account the passive design features of the facility. The information should include descriptions of

Builder / ESD Consultant

Commissioning
Design Requirements
systems installed in the building, sustainable transport in the area as well
as sustainable building operation suggestions relevant to building users.
Training of facility managers must occur, and logbooks of maintenance
should be recorded periodically.
These documents will be required to be handed over to demonstrate that
they have been created and also are in line with the required guidelines.

Environmental Building Performance (5.1)

The building design will have performance targets set for at least two of the following environmental building performance metrics:

- Greenhouse gas emissions - commitment in $\mathrm{kg} / \mathrm{CO}_{2} / \mathrm{m}^{2}$;
- Potable water usage - kL/person;
- Operational waste - kg/person; and/or
- Indoor environment quality - complete occupant comfort surveys, HVAC systems targets and thermal and lighting comfort.

The selected targets will be monitored and reported against.

 Implementation	Project Stage

Metering and Monitoring $(6.0,6.1)$

The design will include electronic metering systems that will be integrated into the building to monitor and report on energy and water consumption and control the building central services. This should be compiled as a 'Metering and Monitoring Strategy,' identifying the following end uses:

Energy:

- HVAC
- Domestic Hot Water
- Interior Lighting
- Exterior Lighting
- Lift
- Solar PV

Water:

- Amenities
- Irrigation
- Rainwater Tank usage

Energy and water consumption will be monitored and reported against set performance targets for the building. These will be updated periodically to ensure the building performance has continuous improvement.

A Metering and Monitoring Strategy will be required to be prepared outlining this.

Recommended to be provided as an educational tool for students by providing a real-time display in a main foyer/corridor.

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any ennvrioht

Construction Environmental Management (7.0)

As part of the construction process, the contractor will implement a project-specific Best Practice Environmental Management Plan-this must be in line with NSW EMS Guidelines. This will be in place before starting works and throughout the construction process.

Design Development

Services Consultant

Design Development
(

Formalised Environmental Management System (7.1)

The building contractor for the project will hold an EMS certified by a third-party organisation that provides compliance to AS/NZS ISO 14001 or another relevant Standards. Alternatively, have an EMS in line with ISO 14001 standards as a minimum.

Builder Construction

Design Requirements	 Implementation	Project Stage
Evidence of this accreditation will be required.		
High Quality Staff Support (Credit 7.2)		
High quality staff support will be put in place for site workers to promote mental and physical health outcomes and knowledge on sustainable practices. This may be through on-site, off-site and/or online educational programs.		
Examples include Beyond Blue, Headspace, and Mates in Construction.		
At least three distinct issues must be addressed, including mental health (e.g. heathy eating, active lifestyle, depression, suicide prevention, alcohol, tobacco).	Builder	Construction Documentation

Additionally, on-site training for all contractors and subcontractors, who are present on site for at least three days, covering information on sustainability and the role site workers play in delivering a sustainable building, is to be provided.

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any

2.2 Indoor Environment Quality

Indoor Environment Quality (IEQ) within the buildings will be improved through various initiatives whencholhelp to create a healthy indoor environment free from toxins with ample supply of daylight and outside air.

Design Requirements	Responsibility \& Implementation	Project Stage
Ventilation System (9.1)		
All air handling equipment in the project will meet the following conditions: - Full compliance with ASHRAE Standard 62.1:2013 for minimum separation distances between pollution sources and outdoor air intakes (to mitigate entry of outdoor pollutants); - Will be easily maintained and cleaned; and - Will be cleaned prior to use and occupation.	Services Consultant	Design Development
Provision of Outdoor Air (9.2)		
Outdoor air rates provided at 100\% greater than the minimum required by AS 1668.2:2012.	Services Consultant	Design Development
Exhaust or Elimination of Pollutants (9.3)		
Canteen, science and food technology exhaust ducts will be directly discharged from the building with no recirculation component. Printer/photocopy equipment located in an enclosed space with dedicated exhaust riser directly to outside.	Services Consultants / Architect	Design Development
Internal Noise Levels (10.1)		
The design of the development will achieve internal ambient noise levels suitable and relevant to the activity type in relevant spaces (no more than $5 \mathrm{~dB}(\mathrm{~A})$ above the lower figure in the range recommended in Table 1 of AS/NZ2107: 2016).	Acoustic Consultant	Design Development
Reverberation (10.2)		
The design of the development will have the potential to reduce reverberation to a level suitable for the activity type in the relevant spaces: below the maximum stated in the relevant standard (Table 1 of AS2107:2016).	Acoustic Consultant	Design Development

Acoustic Separation (10.3)

 part of a planning process under the Planning and Environment Act 1987. The document must not be used for anyResponsibility \& Implementation purpose which may breach any
The development design will address noise transmisbion in enclosed spaces. Partitions will be constructed to achieve a weighted sound reduction index $\left(R_{w}\right)$ of at least 45 (for all partitions without a door) and 35 (for all partition types that contain a door).

An acoustic report will be required to demonstrate that these requirements are met.

Minimum Lighting Comfort (11.0)

All luminaires will be installed with high-frequency ballasts.
All lights selected will be flicker-free and will accurately address the perception of colour in the space, by having a minimum Colour Rendering Index (CRI) of 80.

General Illuminance and Glare Reduction (11.1)

For learning spaces, Best Practice lighting levels will be met and will be in accordance with AS 1680.1:2006 for different space types. Internal lights are fitted with baffles, louvres or diffusers to obscure any direct light source so as to cut out glare.

Electrical Engineer	Design Development
Electrical Engineer	Design Development

Surface Illuminance (11.2)

Sufficient illuminance will be provided for task areas such as the classrooms and over bathroom basins within the development to ensure that there is adequate light to carry out tasks in these areas.

Construction

Electrical	Construction
Engineer	Documentation

Design Development

Glare Reduction - (12.0)
Glare into the building will be controlled via the provision of shading from the roof (for the Third Floor) as well as blinds provided to all unshaded windows. External mechanical roller blinds would also provide a significant reduction in heat gain during these periods.

Daylight (12.1)

The development is provided with plenty of natural light via the provision of windows to all learning spaces, and skylights to the basketball court.

Internal amenity is enhanced through light-coloured internal finishes to maximise natural light levels.

External Views (12.2)

Access to a 'high quality' external view is provided to at least 60% of the occupied areas.

Architect	Design Development

Volatile Organic Compounds (13.1, 30C)

All paints, adhesives and sealants, flooring, and wall and ceiling coverings will not exceed the limits outlined in Appendix 2. Alternatively, products with no VOCs will be selected. Paints such as eColour, or equivalent, should be considered. 50% of paints (by volume) to be specified as ultralow VOC, with maximum TVOC content of $5 \mathrm{~g} / \mathrm{L}$.

Formaldehyde Minimisation (13.2)

All engineered wood products will have 'low' formaldehyde emissions, certified as EO or better. Alternatively, products with no formaldehyde will be specified. Emissions limits are listed in Appendix 4 - Green Star VOC and Formaldehyde Limits.

Products such as Ecological Panel - 100\% post-consumer recycled wood (or similar) will be considered for use within the development.

Architect	Construction
Documentation	

Architect	Construction Documentation

This copied document to be made available SUSTAINABLE DEVELOPMENT CONSULTA NTS for the sole purpose of enabling its consideration and review as

Design Requirements

Thermal Comfort (14.1) part of a planning process under the Planning and Environment Act 1987. The document must not be used for any Thermal comfort Predicted Mean Vos (PMV) may breach any Construction Code (NCC 2019) and Green Star to apply to all conditioned spaces.

 Implementation	Project Stage
ESD Consultant Mechanical Engineer	Design Development

2.3 Energy Efficiency

Energy usage of the campus redevelopment will be minimised by the installation of an efficient hot water system, heating and cooling systems, lighting, and best practice building envelopes.

Design Requirements	Responsibility \& Implementation	Project Stage
Building Envelope (15E)		
All new building envelope facades (walls and glazing) are to be designed to meet the requirements of the NCC 2019 Façade Calculator (or better than the allowance). Floor and ceiling insulation are to meet the requirements of Section J of the NCC 2019 at a minimum. Additionally, preliminary JV3 energy modelling will be undertaken during the detailed design phase to identify the building fabric requirements necessary to achieve a minimum of 5 points in the Green Star Design \& As Built v1.3 Greenhouse Gas Emissions Calculator.	ESD Consultant Architect	Construction Documentation
Heating and Cooling Systems (15E)		
Heating and cooling will be provided by energy efficient air conditioners, selected to achieve an EER/COP of minimum 3.5.	Mechanical Engineer	Design Development
Hot Water Systems (15E)		
Hot water in the development will be provided via electric instantaneous systems (within one-star of best available). This will be installed at points of use, minimising distribution heat losses. All pipework will be insulated to further minimise distribution heat losses.	Hydraulic Engineer	Design Development
Indoor Lighting		
Energy consumption from artificial lighting throughout the development will be reduced by using LED lighting and by optimising daylight diffusion through light-coloured internal surfaces (particularly walls, furniture and ceilings). Lighting levels must not exceed the maximum wattages listed in Table J6.2a of the 2019 BCA without the use of any adjustment factor. Lighting energy consumption will be reduced both by energy efficient fittings, and the use of daylight sensors.	Electrical Engineer	Design Development
External Lighting		
External lighting will be LED and will have controls (e.g. motion detectors and timers) to minimise consumption during off-peak times (i.e. when the school is closed).	Electrical Engineer	Design Development
Electrical Appliances		
Electrical appliances (other than air-conditioning) should have an energy rating no less than 1.5 star below the highest available energy rating under the E3 Program. Refer to http://www.energyrating.gov.au/ for current ratings. The number of fridges and fridge locations will be limited.	Services Consultant	Design Development

 Implementation	Project Stage

Peak Electricity Demand Reduction \& Solar PV (16B, 30A)

Peak electricity demand will be reduced with the addition of roof-mounted solar photovoltaic arrays. This will generate green energy and offset the HVAC and internal lighting loads of the development.

With usage patterns over the peak daytime period of solar energy production (10am-2pm), and high expected usage rates, the more solar PV that can be installed on both Buildings 2 and 3 , the better. It is recommended that the PV array be increased in size as much as possible given the space limitations.

A minimum of 15% of total building energy is to be supplied by solar PV.
Installation must follow CEC guidelines and AS/NZS5033 and consider the use of non-penetrative fixings for rooftop PV. Solar PV systems to have remote monitoring and be integrated to the Building Management System (BMS).

These measures will help to reduce the peak demand of the building.

Lift

The design places the lift adjacent to the stairs, making it easier for users to have the choice of using the stairs.

Energy efficient lifts will be specified that include measures to specifically reduce stand-by consumption such as:

- Switching off control devices when the lift is not in motion \& using a more efficient power supply unit;
- LED lights and display; and
- Suspension specifically designed to reduce friction.

Building Sealing

All windows, doors, exhaust fans and pipe penetrations will be constructed to minimise air leakage as required by the provisions outlined in Section J3 of the 2019 BCA. This will include the use of seals around operable windows and doors as well as caulking to pipe penetrations, and the addition of self-closing louvers or dampers to exhaust fans.

Building Management System (BMS)

A BMS will be installed capable of both gathering and reporting usage data from all meters and alerting the facilities management team in case of atypical or high usage. It is proposed that the BMS will form part of the central monitoring and control systems.
The BMS will be commissioned at its installation. Alerts and automatic report generation must be set up and provided to the building manager.

Refrigerant Pollution

Refrigerants to be selected to have zero ozone depletion potential (ODP) and a global warming potential (GWP) of less than 10 in all systems.

Architect	Design Development

Service	Design
Consultant	Development

BMS HVAC Tuning and Sensors

Rooms used intermittently (e.g. meeting rooms) will have their own HVAC systems and will include controls and thermostats for those rooms.

Wider heating and cooling setpoint design criteria to be implemented with at least a $2^{\circ} \mathrm{C}-3^{\circ} \mathrm{C}$ dead band.

Design Development

Design Requirements	 Implementation	Project Stage
All HVAC systems to have time schedules, linked to the BMS. The BMS will allow cooling and heating lockouts based on outside air temperatures or calendar.		

2.4 Transport

The 235-273 Victoria Street, West Melbourne proposed redevelopment site has been assessed using the "Walk Score" locational performance tool. The tool was developed in 2007 by Front Seat using the Google Maps tools. This tool considers the number of facilities within close proximity, and public transit based on distance and type of nearby transit lines. Numerical scores of between 0 and 100 for the following two aspects are provided:

- Walk Score: 0 being heavily car dependent with access to community facilities that are located some distance away, and 100 reflecting a location that is easily accessible to abundant facilities by foot.
- Transit Score: 0 being the location only provides minimal transit while 100 reflecting a location that is well served by public transport.
The proposed development in West Melbourne achieves a Walk score of 97 out of 100 - "Walker's Paradise" and a Transit Score of 100 out of 100 - "Rider's Paradise", which indicate that the building users can complete most daily errands without requiring a car and that transit is convenient for most trips.

235-273 Victoria Street		Walker's Paradise	Transit Score	Rider's Paradise
Elbourne, Melbourne, 3003	7	Dally errands do not require a	100	World-class public
$3 \mathrm{~min}=12 \mathrm{~min}$ dh $5 \mathrm{~min}\{19 \mathrm{~min}$				transportation.

What's Nearby

Figure 5: Walk Score results and map showing amenities surrounding 235-273 Victoria Street, West Melbourne. (Source: walkscore.com)

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.		ADMERTISE
		PLAN
	STAGE 2 ESD STATEMENT.V1	PG. 17

Access to Public Transport (17B.1)
The development site has direct access within 1 km walking distance to the following public transport options:
V-Line Train Line:

- Southern Cross station
- Southern Cross coach terminal

Metro Train Line:

- Melbourne Central and Flagstaff City Loop stations
- Parkville and Arden stations (under construction)

Tram Routes:

- 57: West Maribyrnong - Flinders Street Station
- 58: Toorak - West Coburg

Bus Routes:

- 951: City - Glenroy
- 219/220: Gardenvale - Sunshine
- 216: Brighton Beach - Sunshine

Reduced Car Parking Provision (17B.2)
Compliant as designed.

Architect	Design Development

Low-Emission Transport (17B.3)

Two motorbike parking spaces are provided at Basement level.
Minimum 5\% of car parking spaces to be dedicated to electric vehicles. These spaces are to be clearly designated with different coloured line markings (e.g. green) and highly visible signage, with charging infrastructure provided for each space.

Active Transport Facilities

A total of 52 new spaces will be provided for the storage of bicycles for Stage 2 (for Stage 1 and 2 combined there is to be 90 new spaces):

- 16 spaces for staff (at Basement level), and
- 36 spaces for students (surrounding the new Multipurpose Play Area bordering Victoria Street).

Additionally, end of trip facilities with showers, changing areas and lockers are provided for staff at Basement level.

Architect / Electrical Engineer

Design Development

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.
The document must not be used for any purpose which may breach any
ronvrioht

Figure 6: PTV Local Area Map indicating the public transport options surrounding 235-273 Victoria Street (black X)

2.5 Water Resources \& Stormwater Treatment

Water will be used efficiently across the development through efficient fixtures and fittings, and collection and use of rainwater which helps to reduce mains water requirements and diverts stormwater.

Design Requirements	Responsibility \& Implementation	Project Stage
Potable Water Reduction - Efficient Fixtures (18A)		
Efficient water fittings and fixtures will be installed to reduce the volume of mains water used. The following Water Efficiency Labelling Scheme (WELS) star ratings will be specified:		
- Wash hand basin taps: flowrate $\leq 4.5 \mathrm{~L} / \mathrm{min}$ (6 Star); - Toilets: dual flush, 3/4.5 L/flush (≥ 4 Star); - Urinals: ≤ 0.8 L/flush (6 Star); - Showers: flowrate $\leq 7.5 \mathrm{~L} / \mathrm{min}$ (3 Star); and - Dishwashers: ≥ 4 Star WELS	Architect / Services Consultant	Design Development

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which-mary-breach-any

Design Requirements
 Rainwater Collection and Reuse (18A, 26.1, 26.2)

Rainwater runoff from suitable roof area from Buildings 2 and 3 will be collected and stored in a rainwater tank with a minimum effective storage capacity of 15 kL . The collected water will be used for toilet and urinal flushing throughout Buildings $1 \& 2$, as well as irrigation of landscaped areas.

The tank has been sized appropriately to reduce peak stormwater flows and prepare for the effects of climate change and associated potential for the increased frequency of heavy rainfall events.

Refer Appendix 2 - MUSIC Assessment and WSUD Report.

Water Efficient Landscaping (18A)

A sub-surface drip irrigation system, with moisture sensor override if required, will be installed along with the use of mulch (min. depth of 75mm).

A variety of indigenous species will be included in the landscaping of the site. This will help to enhance local biodiversity, reduce potable water demand, and encourage native birds to visit the space.

Responsibility \&
Implementation
Project Stage

Civil/	
Hydraulic Engineer	Design Development

Stormwater - Pollution Reduction Target (26.1)

Post-development ARI discharge from the site is not to exceed predevelopment peak ARI event discharge, based on a 5-year design ARI.

Civil	Design
Engineer	Development

Stormwater - Pollution Reduction Target (26.2, 30C)
The proposed redevelopment site achieves a compliant site-wide MUSIC result. This result can be attributed to the rainwater collection and re-use systems, and to raingardens which filter stormwater prior to discharge. Refer Appendix 2 - MUSIC Assessment and WSUD Report.

This result demonstrates stormwater discharged from the site meets the minimum pollution reduction targets in accordance with Clause 22.23 along with Green Star credit 26.2 Column B.

Improvements in stormwater pollution reduction outcomes beyond minimum levels has been achieved as modelled, allowing an additional point to be targeted as an innovation credit.

Waterless HVAC Systems (28)

Air-conditioning units will use air-cooled condenser components which will help to reduce the development's overall water usage while also preventing the growth and spread of legionella bacterium, which thrive in warm stagnant water.
Fire Test Water Reuse (18A)
Minimum 80% of test water from the fire sprinkler system is to be captured for reuse.

Fire Services	Design
Consultant	Documentation

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.
The document must not be used for any purpose which may breach any renverioht

This copied document to be made available for the sole purpose of enabling

2.6 Building Materials

The devarin Plann 1087 development will aim to promote the useof recycied materials and materia environmental impacts.

Design Requirements

 Thote the use use recycled matelrials and materia purpose which may breach any| Design Requirements purpose which may breach any | Responsibility \& Implementation | Project Stage |
| :---: | :---: | :---: |
| Insulation | | |
| All insulants used on site must have a zero Ozone Depletion Potential in processing and manufacturing. | Builder | Construction |
| Concrete - (19B.1) | | |
| The Portland Cement content of new concrete should be reduced by a minimum of 40% through a replacement with supplementary cementitious materials such as fly-ash, slag or metakaolin. The mix water will also be recycled water or rainwater for at least 50% of the mix and 25% of all fine aggregate is to be manufactured sand (not virgin sand from a quarry).
 Documentation of all concrete will be required for submission including mix properties technical summaries.
 A further recommendation is that Holcim concrete be investigated for use as they now have a full EPD on concrete in Australia. | Builder /
 Structural
 Engineer | Construction |
| Structural Steel (19B.2) | | |
| The project will include a reduction in the mass of new steel framing by 5% when compared to standard practice or by specifying high strength steel.
 A qualified Structural Engineer will be required to demonstrate compliance by way of a short report including calculations. | Structural Engineer | Construction |
| Responsible Steel Maker (20.1.0) | | |
| At least 95% (by mass) of all steel is to be provided by a responsible steel maker with valid ISO 14001 EMS in place, and who is a member of the World Steel Association's Climate Action programme. | Builder | Construction Documentation |
| Responsible Steel Fabricator (20.1A) | | |
| For a steel-framed building, at least 60% of structural steelwork is to be supplied by a steel fabricator/steel contractor accredited to the Environmental Sustainability Charter of the Australian Steel Institute. | Builder | Construction Documentation |
| Timber (20.2) | | |
| All new timber used in the development will be Forest Stewardship Council (FSC) or Program for the Endorsement of Forest Certification (PEFC) certified or recycled/reused. | Builder /
 Architect | Construction Documentation |
| Cables, pipes, floors and blinds (20.3) | | |
| All standard uses of cables, pipes, flooring and blinds within the development will either not contain any PVC or will be sourced from a manufacturer/supplier that adheres to the Green Building Council of Australia's Best Practice Guidelines for PVC in the Built Environment. | Builder/
 Services
 Consultant | Construction Documentation |
| Flooring (21.1) | | |
| All flooring will be manufactured from materials/products certified under any of the following:
 - Carpet Institute of Australia Limited, Environmental Certification Scheme (ECS) v1.2;
 - Ecospecifier GreenTag GreenRate V3.1;
 - Good Environmental Choice (GECA); and/or | Builder/
 Architect | Construction Documentation |

Design Requirements	 Implementation	Project Stage
The Institute for Market Transformation to Sustainability (MTS) Sustainable Materials Rating Technology Standard Version 4.0 - SMaRT 4.0.		
Alternatively, floor coverings and joinery must be durable, include some		
eco-preferred content, be modular and/or come from a manufacturer with		
a product stewardship program and ISO 14001certification.		

Figure 7: Examples of approved environmental labels for products which may be incorporated into the development

Product Transparency and Sustainability (21.1)

The project will target a minimum of at least 3% of the project value of products and meet transparency and sustainability requirements are under one of the following initiatives:
A. Reused products;
B. Recycled content products;
C. Environmental Product Declarations;
D. Third-Party Certification; or
E. Stewardship Programs.

Examples of opportunities under these initiatives are:

- Re-used formwork (A)
- Reinforcing rod, bar, mesh and wire from InfraBuild (C)
- Steel - Welded Beams and Columns from Bluescope (D)
- Colorbond steel from Bluescope (D)
- Hot Rolled structural steel products from InfraBuild (C)
- Structural Steel products from Hyundai Steel (C)
- Many Laminex products (D)
- InterfaceFlor and Onterra (and other) Carpets (D)

Urban Heat Island Effect Reduction (25.1)

Selection of light-coloured roofing materials with a three-year Solar Reflectance Index (SRI) greater than 64 (roof pitch $<15^{\circ}$) and lightcoloured terrace/balcony paving with a three-year SRI greater than 34.
This can be achieved through the selection of a light colour such as Colorbond 'Surfmist'.

Design Development

Solar Panels are also considered to meet this requirement.

	This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any		ADVERTIS PLAN
235-273 VICT		ESD STATEMENT.V1	PG. 22

2.7 Urban Ecology

Design Requirements

Vegetation

A portion of the site is covered with vegetation through the inclusion of planters and raingardens across the development.

It is recommended that a variety of indigenous species be included in the landscaping of the site.
This will help to enhance local biodiversity and encourage native birds to visit the space, whilst also facilitating on-site stormwater infiltration.

Raingardens

Raingarden bioretention systems have been included to filter rainwater draining from the trafficable terraces and suitable roof areas.

Such systems, designed with appropriate indigenous vegetation, contribute to local habitat improvement and the provision of attractive spaces.

Sustainable Sites (24)

At the time of purchase, the site did not include old-growth forest, or a wetland of "High National Importance", or did not impact on a Matter of National Significance or have to be referred to the Federal Environment Minister as a "controlled action". Considered compliant as an existing developed site.

Light Pollution to Neighbouring Bodies (27.0)

The projects lighting design must comply with AS4282:1997 'Control of the Obtrusive Effects of Outdoor Lighting' and not shine into the night sky or towards a neighbour, with conditions applied to the site boundary.

Architect/ Electrical Engineer

Light Pollution to Night Sky (27.1)

Light pollution is minimised by either:

Architect / Landscape Architect

Design
Development

Design Development

 Implementation	Project Stage

Aratict Architect

N/A Inherent in location
A. No external luminaire on the project will have an Upward Light Output Ratio (ULOR) exceeding 5%, relative to its mounted orientation, OR
B. Direct illuminance from external luminaires on the project produces a maximum initial point illuminance value no greater than:

- 0.5 Lux to the site boundary, and
- 0.1 Lux to 4.5 metres beyond the site into the night sky.

| Electrical |
| :---: | :---: |
| Consultant |\quad| Design |
| :---: |
| Development |

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.
The document must not be used for any purpose which may breach any ennvrioht

2.8 Waste Management

The development will aim to manage waste emissions from the building in an efficient manner, seeking to reduce and reuse waste where possible.

Design Requirements

Responsibility \&
Project Stage Implementation

Construction Waste Management

The builder will develop a construction waste management plan (CWMP) for the construction phase. This will include the following:

- Waste generation;
- Any waste systems;
- Minimisation Strategy;
- Performance / Reduction targets;
- Bin quantity and size;
- Collection frequency;
- Signage; and
- Monitoring and reporting including frequency and method.

The CWMP will require that all hazardous substances, pollutants and contaminants must be managed and disposed of in accordance with all state regulatory requirements. Where these materials are treated, or used on site, they must be in accordance with a sanctioned remediation process.

The CWMP may form part of a broader Construction Environmental Management Plan (CEMP).

Operational Waste (8A, 30C)

A waste management plan will be prepared by Leigh Design, and include the following:

- Waste generation;
- Any waste systems;
- Minimisation Strategy;
- Performance / Reduction targets;
- Bin quantity and size;
- Collection frequency;
- Waste contractors;
- Signage; and
- Monitoring and reporting including frequency and method.

In addition, the following prescriptive Green Star requirements must be met:

- 90% of waste generated onsite diverted from landfill (via reuse or recycling);
- Separation of Waste Streams;
- Dedicated Waste Storage Area; and
- Access to Waste Storage Area

Construction and Demolition Waste Reporting Accuracy (Credit 22.0)
The waste contractors and waste processing facilities servicing the project demonstrate compliance with the Green Star Construction and Demolition Waste Reporting Criteria.

Services Consultant	Construction Documentation
Builder	Construction Documentation
Builder	Construction

Construction and Demolition Waste (22A)
A maximum 5 kg per sqm of GFA of the waste generated during construction and demolition by weight will be sent to landfill.

Planning and Environment Act 1987.
The document must not be used for any purpose which may breach any

3. Conclusion

As set out in this ESD Statement, Stage 2 of the proposed Simonds College redevelopment at 235-273 Victoria Street, West Melbourne will meet best practice Environmentally Sustainable Design requirements through the initiatives outlined in this report including the use of energy efficient systems to reduce greenhouse gas emissions, rainwater reuse tanks and efficient fittings to reduce potable water consumption, and measures to reduce waste not only during building operation, but also during demolition and construction.
The initiatives that have been included within this ESD Statement all have a proven track record of serving their individual purpose and can be easily maintained with any failures obvious to school staff and the facilities management team. This helps to ensure the ongoing sustainability of the building, as the systems installed in the beginning are maintained for purpose throughout the life of the building.

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any renverioht

Appendix 1 - Green Star Design \& As Built Potable Water Calculator
Potable Water, Performance Pathway (18A) - All projects, except Hotels \& Residentials

GENERAL						
Building occupancy, areas and operation						
Space type description	Area (m^{2})	Peak days of operation (remaining days assumed off-peak)	Occupancy profile	Maximum design occupancy used in water use calculations ($\mathrm{m}^{2} /$ person) (Enter manually OR use default)		Percentage of building users who occupy the space continually for periods greater than one hour.
				Proposed Building design occupancy (m2/person)	Default design occupancy (Not applicable for residential areas)	
Meetingroomtoffice	101	5 days a week	Class 9b School	10	Please select	100\%
General Classioom	1643.3	5 days a week	Class 9b School	2	Please select	100\%
Practical	341	5 days a week	Class 9b School	5	Please select	100\%
Gym	726.4	5 days a week	Class 9b School	3	Please select	100\%
Mulipurpose	109.4	5 days a week	Class 9b School	1	Please select	100\%
Library - teading space	212.9	5 days a week	Class 9b School	2	Please select	50\%
Libray-storage	39.2	5 days a week	Class 9b School	30	Please select	5\%
Kitchen	43.7	Please Select	Please Select	10	Please select	100\%
		Please Select	Please Select		Please select	
		Please Select	Please Select		Please select	
Non occupied areas	2951.7	n/a	n/a			
TOTAL AREA	6168.6					

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any
convrioht

1. SANITATION

Water demand from sanitation fixtures and fittings (Annual water demand from faxtures and fittings is calculated using assumed usage rates based on the space types and occupancies entered above. See pages $10-13$ of the Green Star - Potable Water Calculator Guide for further details.)

Description	Water efficiency(Enter manually OR nominate WELS Star Rating)		Water efficiency used in calculations (L/flush)	Percentage of each type	Proposed Building water demand (kL/year)	Standard Practice Building water demand (kL/year)
	Manufacturer's data (Lffush)	WELS Star Rating selection				
Toilets		4 Star	3.5	100\%		
<enter description>		Select star rating				
<enter description>		Select star rating				
<enter description>		Select star rating				
senter descriptions		Select star rating				
<enter description>		Select star rating				
<enter description>		Select star rating				
<enter description>		Select star rating				
<enter description>		Select star rating				
zenter description>		Select star rating				
			Total	100\%	1264.5	1445.1

The Standard Practice Benchmark is based on 3 StarWELS rated toilets)
URINALS

Are urinals installed?	Yes
Would urinals normally be installed in the building type?	Yes

(Note: if "No" is selected, the project team should provide justification within the short report as to why the standard practice buiding does not have urinals.)

Description	Water efficiency (Enter manually OR nominate WELS Star Rating)		Water efficiency used in calculations (L/min)	Percentage of each type	Proposed Building water demand (kL/year)	Standard Practice Building water demand (kL/year)
	Manufacturer's data (LImin)	WELS Star Rating selection				
Urinals	0.8	6 Star	1	100\%		
<enter description here>		Select star rating				
<enter description here>		Select star rating				
<enter description here>		Select star rating				
<enter description here>		Select star rating				
<enter description here>		Select star rating				
<enter description here>		Select star rating				
<enter description here>		Select star rating				
<enter description here>		Select star rating				
<enter description here>		Select star rating				
			Total	100\%	222.3	555.8

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any

Description	Water efficiency(Enter manually OR nominate WELS Star Rating)		Water efficiency used in calculations (L/min)	Percentage of each type	Proposed Building water demand (kL/year)	Standard Practice Building water demand (kL/year)
	Manufacturer's data (Umin)	WELS Star Rating selection				
Taps		6 Star	4.5	100\%		
<enter description>		Select star rating				
<enter descripition>		Select star rating				
<enter description>		Select star rating				
senter description>		Select star rating				
senter description>		Select star rating				
<enter description>		Select star rating				
<enter description>		Select star rating				
senter description>		Select star rating				
zenter description>		Select star rating				
			Total	100\%	469.0	781.6

The Standard Practice Benchmark is based on 4 Star WELS rated taps
(The irrigation requirement for the site is calculated for each month of the year, for each landscaped 'zone' in the site (a zone being a landscaped area that has the same soil type, irrigation system and as far as possible, types of plants).
Climate data

Month	Rainfall (mm)	Evapotranspiration (point potential) (mm)
January	33.6	190
February	50.2	160
March	26.3	135
April	50.0	88
May	39.3	47
June	40.9	33
July	36.3	38
August	45.1	56
September	41.6	82
October	55.2	124
November	50.2	147
December	53.0	164

ADVERTISED
 PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any ennvrioht

Landscape zones

Name and description	Area of zone (m^{2})	Percentage of zone undercover (\%)	Weighted average crop coefficient in zone	systems water application	User determined application efficiency
Landscaping	38.8	0\%	0.25	Drip - Under mulch (85\%)	
				Please select	
				Please select	
				Please select	
				Please select	
				Please select	
				Please select	
				Please select	
				Please select	
				Please select	
Standard practice landscape irrigation assumptions:	(Same as Proposed Building)	(Same as Proposed Building)	(0.6)	(75\%)	

Landscape irrigation requirements per month

Month	Proposed Building (kL)	Standard Practice Building $\mathbf{(k L)}$
January	1.2	4.9
February	0.5	3.4
March	0.8	3.4
April	0.0	1.2
May	0.0	0.2
June	0.0	0.0
July	0.0	0.1
August	0.0	0.3
September	0.0	1.3
October	0.0	2.1
November	0.3	3.0
December	0.4	3.4
Total	3.2	23.3

Rainwater collection

Rainfall collection area (m2)		1,270
Run-off co-efficient	Flat roof without gravel	0.8
Storage capacity (kL)	15	
Rainwater tank reliability \%	24%	

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.
The document must not be used for any purpose which may breach any
ennurioht

Is the building required under part E of the National Construction Code (formerly the Building Code of Australia) to have sprinklers installed as part of its fire protection system?	Yes
Does the building's sprinkler system discharge water during testing?	Yes
Is greater than 80% of discharged water captured for reuse?	Yes
Testing frequency (enter number of tests per year)	1
Volume discharged per test (L)	100000
Proportion of water captured per test (\%)	80%
Requirements met	Yes

ADVERTISED PLAN

RECLAIMED WATER

Reclaimed water sources
Note: All systems entered into this calculator must comply with local EPA requirements.

DISTRIBUTION OF WATER SOURCES

Water fittings / systems	Percentage of fittings/systems connected to the following water sources				
	Rainwater	Greywater	Blackwater	Stormwater recycling or other off-site reclaimed water	Mains water only (this column must be completed enter a figure between 0% and 100% for each water system)
Toilets	100\%				0\%
Urinals	100\%				0\%
Indoor taps	0\%				100\%
Showers - occupants	0\%				100\%
Showers - sports	0\%				100\%
Laundries	0\%				100\%
Dishwashers	0\%				100\%
Heat rejection	0\%				100\%
Washdown	0\%				100\%
Landscape irrigation	100\%				0\%
Fire protection systems	0\%				100\%
Swimming pools	0\%				100\%
Process cooling	0\%				100\%

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.
The document must not be used for any purpose which may breach any ennvrioht

WATER DEMAND SUMMARY
Total water demand summary for each system and per month

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.
The document must not be used for any purpose which may breach any ennvrioht

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any
ennvrioht

Appendix 2 - MUSIC Assessment and WSUD Report

Objectives

The quality and quantity of stormwater leaving a site can have a significant impact on the surrounding infrastructure and waterways. Impervious surfaces move water quickly and efficiently out of built-up areas straight into stormwater infrastructure, which in turn quickly moves the untreated water into natural watercourses. This process does not treat the stormwater and as the water flows into natural water courses, it causes erosion and pollution of those waterways with the rubbish, sediments, pathogens, and other pollutants off the impervious surfaces into the stormwater drains.

The City of Melbourne recognises the importance of stormwater management and the effects on the surrounding environment. Part of this ESD Masterplan addresses how the proposed development responds to the principles and requirements of Water Sensitive Urban Design (WSUD). The main objectives for WSUD are:

- To achieve the best practice water quality performance objectives as set out in the Urban Stormwater Best Practice Environmental Management Guidelines, Victoria Stormwater Committee 1999 (as amended). Currently, these water quality performance objectives are:
- Suspended Solids - 80\% retention of typical urban annual load;
- Total Nitrogen - 45\% retention of typical urban annual load;
- Total Phosphorus - 45\% retention of typical urban annual load; and
- Litter-70\% reduction of typical urban annual load.
- To promote the use of water sensitive urban design, including stormwater use.
- To mitigate the detrimental effect of development on downstream waterways, by the application of best practice stormwater management through water sensitive urban design for new developments.
- To minimise peak stormwater flows and stormwater pollutants to improve the health of water bodies, including creeks, rivers and bays.
- To reintegrate urban water into the landscape to facilitate a range of benefits including microclimate cooling, local habitat and provision of attractive spaces for community use and wellbeing.
Developments must also incorporate treatment measures that improve the quality of water and reduce flow of water discharged into waterways (such as collection and use of rainwater/stormwater on site) and encourage the use of measures to prevent litter being carried off-site in stormwater flows.

The proposed development has addressed these requirements by identifying the impervious surfaces within the site and implementing treatments to mitigate the impacts of stormwater leaving the site. To assess these initiatives, the MUSIC model - which is an industry accepted tool - was used to determine the treatment effectiveness of these initiatives.

The stormwater assessment has been completed as a site-wide approach, encompassing Stages 1, 2 and 3 in one MUSIC assessment to achieve compliance for the overall site. Additionally, separate Green Star Potable Water Calculators have been completed for each of the three stages of development to ensure that individual compliance can be achieved for each stage with Clause 22.19.

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.
The document must not be used for any purpose which may breach any ennvriaht

Site Characteristics

For the purposes of the stormwater assessment, the site has been delineated into the basic surface types listed below:

- Site area of $4098.0 \mathrm{~m}^{2}$;
- Roof area of $2,553.2 \mathrm{~m}^{2}$;
- Terrace area of $734.9 \mathrm{~m}^{2}$;
- Permeable area (separate to raingardens) of $172.6 \mathrm{~m}^{2}$, and
- Raingarden area of $52.9 \mathrm{~m}^{2}$.

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any convrioht

Figure 9: Site delineation (Stage 2)

Stormwater Management Initiatives

Stormwater treatment initiatives will need to be implemented. The following section presents the different surfaces that have been identified for treatment, and the required treatment ${ }^{1}$. The initiatives to manage stormwater flows for the building area will underpin the overall performance of the site and its ability to meet stormwater management objectives.
Table 2: List of areas and their stormwater treatment measures

Surfaces	Area	Required Treatment
Site Area (dark blue line)	4,098.0m²	Detailed below (covers all three stages).
Building 1 Roof Area (brown)	$377.7 \mathrm{~m}^{2}$	Entire Building 1 roof and paved area to the north of Building 1 drain to inground raingardens for filtration prior to diversion to the
Building 1 Paved Area (pink)	$82.6 \mathrm{~m}^{2}$	legal point of discharge, with a total minimum area of $20 \mathrm{~m}^{2}$ (shown as $2 \times 10 \mathrm{~m}^{2}$ raingardens in Figure 8).
Building 2 Roof Area (blue)	1,270.0m ${ }^{2}$	Rainwater will be collected from suitable areas of Building 2, along with the new link between Buildings $1 \& 2$, a total roof area of $1,270 \mathrm{~m}^{2}$, and stored in a 15 kL rainwater tank. The stored water will be used for irrigation, and for the flushing of all toilets and urinals throughout Buildings $1 \& 2$. Any overflow from the rainwater tanks will be discharged to the Legal Point of Discharge (LPD) onsite.
Building 2 Trafficable Terrace Area (orange)	$570.2 \mathrm{~m}^{2}$	Terrace areas are to drain to a minimum $15.0 \mathrm{~m}^{2}$ Raingarden for filtration, and subsequently discharge to the Legal Point of Discharge (LPD) onsite.
Buildings 3 \& 4 Roof Area (yellow)	$611.4 \mathrm{~m}^{2}$	Rainwater will be collected from suitable roof areas of Building 3 and Building 4 and stored in a 15 kL rainwater tank. The stored water will be used for irrigation, and for the flushing of all toilets and urinals throughout Buildings $3 \& 4$. Any overflow from the rainwater tanks will be discharged to the Legal Point of Discharge (LPD) onsite.
Building 3 West Roof Area (turquoise)	$84.0 \mathrm{~m}^{2}$	Roof areas are to drain to a $2 m^{2}$ Raingarden for filtration, and subsequently discharge to the Legal Point of Discharge (LPD) onsite.
Building 3 Trafficable Terrace Area (orange)	$164.7 \mathrm{~m}^{2}$	Terrace areas are to drain to a $3.9 \mathrm{~m}^{2}$ Raingarden for filtration, and subsequently discharge to the Legal Point of Discharge (LPD) onsite.
Building 4 north-east Roof Area (pink)	$99.1 \mathrm{~m}^{2}$	North-east roof area of Building 4 is to drain to a minimum $4 \mathrm{~m}^{2}$ Raingarden for filtration, and subsequently discharge to the Legal Point of Discharge (LPD) onsite.
Building 4 south-east Roof Area (purple)	$67.2 \mathrm{~m}^{2}$	South-east roof area of Building 4 is to drain to a minimum $4 \mathrm{~m}^{2}$ Raingarden for filtration, and subsequently discharge to the Legal Point of Discharge (LPD) onsite.

Surfaces	Area	Required Treatment
Garage Roof (light pink)	$42.5 \mathrm{~m}^{2}$	Garage roof to drain to a minimum $2 m^{2}$ Raingarden for filtration, and subsequently discharge to the Legal Point of Discharge (LPD) onsite.
Driveway (red)	$57.0 \mathrm{~m}^{2}$	Driveway to drain to a $2 \mathrm{~m}^{2}$ in-ground Raingarden for filtration, and subsequently discharge to the Legal Point of Discharge (LPD) onsite
Building 4 Entry and south-east corner of Building 4 (grey)	171.8	Untreated area discharging to the Legal Point of Discharge (LPD) onsite.
Raingardens (dark green)	Building 1: $\text { 20m² (e.g. } 2 x$ $\left.10 \mathrm{~m}^{2}\right)$ Building 2: $15 \mathrm{~m}^{2}$ Building 3: $2 \mathrm{~m}^{2}$ $+3.9 m^{2}$ Building 4: $4 \mathrm{~m}^{2}$ $+4 \mathrm{~m}^{2}$ Garage: $2 \mathrm{~m}^{2}$ Driveway: $2 \mathrm{~m}^{2}$	Planter-box raingardens located near to the terraces of Buildings 2 and 3 , and to the roofs of Buildings 3 and 4 , and the garage roof, from where water will be drained for filtration/bioretention, and subsequently discharge to the Legal Point of Discharge (LPD) onsite. In-ground raingarden located adjacent to the driveway, and to the north of Building 1 draining the paved area and Building 1 roof, to which water will be drained for filtration/bioretention, and subsequently discharge to the Legal Point of Discharge (LPD) onsite.
Area draining to Stage 1 Detention System (black)	$174.2 \mathrm{~m}^{2}$	These areas are to drain to a minimum 11 kL detention system prior to diversion to the legal point of discharge.
Area draining to Stage 2 Detention System (black)	$59.1 \mathrm{~m}^{2}$	These areas are to drain to a minimum 3 kL detention system prior to diversion to the legal point of discharge.
Remaining untreated area (unmarked)	$41.1 \mathrm{~m}^{2}$	Untreated area discharging to the Legal Point of Discharge (LPD) onsite.
Permeable Irrigated Landscaping (light green)	$144.6 \mathrm{~m}^{2}$	Permeable surfaces: no treatment required.
Permeable NonIrrigated Landscaping (dark blue)	$28.0 \mathrm{~m}^{2}$	Permeable surfaces: no treatment required.

This copied document to be made available

ADVERTISED PLAN

for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any convrioht

Reuse Demand

Water reuse demand for toilet flushing has been determined using the Green Star Potable Water Calculator as follows:

Table 3: Reuse demand (as per Green Star Potable Water Calculator)

Stage	Toilets (kL/year)	Urinals (kL/year)	Total (kL/year)
1 (Buildings 3 \& 4)	601.2	132.1	733.2
2 (Building 2)	$1,264.5$	222.3	$1,486.8$
3 (Building 1)	42.4	9.3	51.7
Total	$1,908.1$	363.7	$2,271.7$

The Potable Water Calculator assumes toilet and urinal flushing water demand based on the projected occupancy of each building.

Runoff from the roof catchment areas will need to be supplemented with mains water to provide sufficient potable water to the development site.
Refer Appendix 1 - Green Star Design \& As Built Potable Water Calculator.
Stormwater Quality Modelling Results
The impervious surfaces and recommended treatments have been assessed using the MUSIC tool.

The MUSIC model of the treatment measures demonstrates that minimum pollutant load reductions are met.
Table 4: Comparison of pollutant load reduction from the stormwater treatment systems against the best practice targets

Pollutant Load	Required Load Reduction	Calculated Load Reduction
Total Suspended Solids	80%	80.0%
Total Phosphorus	45%	64.1%
Total Nitrogen	45%	66.5%
Gross Pollutants/Litter	70%	94.6%

This copied document to be made available
for the sole purpose of enabling its consideration and review as
part of a planning process under the

The document must not be used for any purpose which may breach any

Figure 11: MUSIC interface layout of the stormwater treatment network and rainwater collection and reuse system. All flows will subsequently discharge to the legal point of discharge.

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.
The document must not be used for any purpose which may breach any ennuright

MUSIC Inputs

Listed in the tables below are the basic inputs used for the MUSIC model. All Planning and Environment Act 1987. were left at MUSIC default $\left(0 \mathrm{~m}^{3} / \mathrm{s}\right.$ and $100 \mathrm{~m}^{3} / \mathrm{s}$ respectively) MUSIC Ger any信 parameters and modelling approaches for MUSIC users (Melbourne Water 2018) was used as a guideline in the creation of the model.

Weather

Rainfall Reference Station	Reference Year	Time Step
Melbourne Airport	$1971-1980$	6 Min

Source Nodes: Urban

Parameter	Input
Node Name	Building 1 Roof $\left(377.7 \mathrm{~m}^{2}\right)$
Total Area	0.038 ha
Zoning/Surface Type	Roof
Fraction Impervious	1.00
Rainfall-Runoff Parameters	Melbourne Water MUSIC Guidelines 2018
Pollutant Flow Concentration Parameters	Melbourne Water MUSIC Guidelines 2018
Parameter	Input
Node Name	Building 1 Paved Area $\left(82.6 m^{2}\right)$
Total Area	0.008 ha
Zoning/Surface Type	Sealed Road
Fraction Impervious	1.00
Rainfall-Runoff Parameters	Melbourne Water MUSIC Guidelines 2018
Pollutant Flow Concentration Parameters	Melbourne Water MUSIC Guidelines 2018

Parameter	Input
Node Name	Building 2 Roof to Tank $\left(1,270 \mathrm{~m}^{2}\right)$
Total Area	0.127 ha
Zoning/Surface Type	Roof
Fraction Impervious	1.00
Rainfall-Runoff Parameters	Melbourne Water MUSIC Guidelines 2018
Pollutant Flow Concentration Parameters	Melbourne Water MUSIC Guidelines 2018

Parameter	Input
Node Name	Building 2 Terrace (570.2m²)
Total Area	0.057 ha
Zoning/Surface Type	Sealed Road
Fraction Impervious	1.00
Rainfall-Runoff Parameters	Melbourne Water MUSIC Guidelines 2018
Pollutant Flow Concentration Parameters	Melbourne Water MUSIC Guidelines 2018
Parameter	Input
Node Name	Building 3 Roof to Tank (381.1m²)
Total Area	0.038ha
Zoning/Surface Type	Roof
Fraction Impervious	1.00
Rainfall-Runoff Parameters	Melbourne Water MUSIC Guidelines 2018
Pollutant Flow Concentration Parameters	Melbourne Water MUSIC Guidelines 2018
Parameter	Input
Node Name	Building 3 West Roof to RG (84.0m²)
Total Area	0.008ha
Zoning/Surface Type	Roof
Fraction Impervious	1.00
Rainfall-Runoff Parameters	Melbourne Water MUSIC Guidelines 2018
Pollutant Flow Concentration Parameters	Melbourne Water MUSIC Guidelines 2018
Parameter	Input
Node Name	Building 3 Terrace (164.7m²)
Total Area	0.016ha
Zoning/Surface Type	Sealed Road
Fraction Impervious	1.00
Rainfall-Runoff Parameters	Melbourne Water MUSIC Guidelines 2018
Pollutant Flow Concentration Parameters	Melbourne Water MUSIC Guidelines 2018

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document-must-net-be-used-for-any

ADVERTISED

 PLAN| Parameter | Input |
| :--- | :--- |
| Node Name | Building 4 West/Central Roof $\left(230.3 \mathrm{~m}^{2}\right)$ |
| Total Area | 0.023 ha |
| Zoning/Surface Type | Roof |
| Fraction Impervious | 1.00 |
| Rainfall-Runoff Parameters | Melbourne Water MUSIC Guidelines 2018 |
| Pollutant Flow Concentration Parameters | Melbourne Water MUSIC Guidelines 2018 |

Parameter	Input
Node Name	Building 4 North-East Roof $\left(99.1 \mathrm{~m}^{2}\right)$
Total Area	0.010 ha
Zoning/Surface Type	Roof
Fraction Impervious	1.00
Rainfall-Runoff Parameters	Melbourne Water MUSIC Guidelines 2018
Pollutant Flow Concentration Parameters	Melbourne Water MUSIC Guidelines 2018

Parameter	Input
Node Name	Building 4 South-East Roof $\left(67.2 \mathrm{~m}^{2}\right)$
Total Area	0.007 ha
Zoning/Surface Type	Roof
Fraction Impervious	1.00
Rainfall-Runoff Parameters	Melbourne Water MUSIC Guidelines 2018
Pollutant Flow Concentration Parameters	Melbourne Water MUSIC Guidelines 2018

Parameter	Input
Node Name	Garage Roof $\left(42.5 \mathrm{~m}^{2}\right)$
Total Area	0.004 ha
Zoning/Surface Type	Roof
Fraction Impervious	1.00
Rainfall-Runoff Parameters	Melbourne Water MUSIC Guidelines 2018
Pollutant Flow Concentration Parameters	Melbourne Water MUSIC Guidelines 2018

	This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.		ADVERTIS PLAN
235		STAGE 2 ESD STATEMENT.V1	PG. 44

Parameter	Input
Node Name	Driveway (57.0m²)
Total Area	0.006ha
Zoning/Surface Type	Sealed Road
Fraction Impervious	1.00
Rainfall-Runoff Parameters	Melbourne Water MUSIC Guidelines 2018
Pollutant Flow Concentration Parameters	Melbourne Water MUSIC Guidelines 2018
Parameter	Input
Node Name	Building 4 Entry (19.0m²)
Total Area	0.002ha
Zoning/Surface Type	Sealed Road
Fraction Impervious	1.00
Rainfall-Runoff Parameters	Melbourne Water MUSIC Guidelines 2018
Pollutant Flow Concentration Parameters	Melbourne Water MUSIC Guidelines 2018
Parameter	Input
Node Name	Untreated South-East Corner (152.8m²)
Total Area	0.015 ha
Zoning/Surface Type	Sealed Road
Fraction Impervious	1.00
Rainfall-Runoff Parameters	Melbourne Water MUSIC Guidelines 2018
Pollutant Flow Concentration Parameters	Melbourne Water MUSIC Guidelines 2018
Parameter	Input
Node Name	Building 1 \& 2 Landscape ($38.8 \mathrm{~m}^{2}$)
Total Area	0.004 ha
Zoning/Surface Type	Revegetated Land
Fraction Impervious	0.00
Rainfall-Runoff Parameters	Melbourne Water MUSIC Guidelines 2018
Pollutant Flow Concentration Parameters	Melbourne Water MUSIC Guidelines 2018

This copied document to be made available
for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The doetment-must not bre-used-for-any
235-273 VIC ORIA STREPTOMESThMELABO@INBr'eschoonstage 2 ESD STATEMENT.V1
convrioht

Parameter	Input
Node Name	Building 3 \& 4 Landscape (133.8m²)
Total Area	0.013 ha
Zoning/Surface Type	Revegetated Land
Fraction Impervious	0.00
Rainfall-Runoff Parameters	Melbourne Water MUSIC Guidelines 2018
Pollutant Flow Concentration Parameters	Melbourne Water MUSIC Guidelines 2018
	Input
Parameter	Area Draining to Stage 1, 11kL Detention (174.2m²)
Node Name	0.017 ha
Total Area	Sealedroad
Zoning/Surface Type	1.00
Fraction Impervious	Melbourne Water MUSIC Guidelines 2018
Rainfall-Runoff Parameters	Melbourne Water MUSIC Guidelines 2018
Pollutant Flow Concentration Parameters	
Rotal Area	Area Draining to Stage 2, 3kL Detention (59.1m²)
Foning/Surface Type	0.006 ha
Paraion Impervious	Sealedroad
Pollutant Flow Concentration Parameters	Melbourne Water MUSIC Guidelines 2018

Parameter	Input
Node Name	Remaining Untreated Area $\left(41.1 \mathrm{~m}^{2}\right)$
Total Area	0.004 ha
Zoning/Surface Type	Sealedroad
Fraction Impervious	1.00
Rainfall-Runoff Parameters	Melbourne Water MUSIC Guidelines 2018
Pollutant Flow Concentration Parameters	Melbourne Water MUSIC Guidelines 2018

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and-Enxironment_Act-1987
 purpose which may breach any
convrioht

Treatment Node: Rainwater Tank

Parameter	Input
Node Name	Building 2, 15kL Rainwater Tank
Number of Tanks	1
Total Tank System Properties	15 kL
Volume below overflow pipe	0.2 m
Depth above overflow	$7.5 \mathrm{~m}^{2}$
Surface Area	7.5 kL
Initial Volume	
Outlet Properties	50.00 mm
Overflow Pipe Diameter	0.60 (Melbourne Water MUSIC Guidelines 2018)
Advanced Properties	2
Orifice Discharge Coefficient	Melbourne Water MUSIC Guidelines 2018
Number of CSTR Cells	1.9 m
Pollutant k \& C* Values	$8 \mathrm{~kL} / \mathrm{d}$ (toilet and urinal flushing, based on Green Star Potable Water Calculator and 200 school days/year, for Buildings 1 and 2).
Re-use	$2.4 \mathrm{~kL} /$ year for irrigation
Max Drawdown Height	

Parameter Input

Node Name	Bu
Number of Tanks	1

Total Tank System Properties

Volume below overflow pipe 15kL
Depth above overflow 0.2 m

Surface Area $\quad 7.5 \mathrm{~m}^{2}$
Initial Volume 7.5kL

Outlet Properties

Overflow Pipe Diameter 50.00 mm

Advanced Properties

Orifice Discharge Coefficient
0.60 (Melbourne Water MUSIC Guidelines 2018)

Number of CSTR Cells
Pollutant k \& C* Values
Re-use
2
Melbourne Water MUSIC Guidelines 2018
This copied document to be made available for the sole purpose of enabling its consideration-and-review-as part of a planning process ${ }^{\text {帨deder the }}$ Planning and Environment Act 1987.
ADVERTISED

Parameter	Input
Max Drawdown Height	1.9 m
Daily Demand	$3.7 \mathrm{~kL} / \mathrm{d}$ (toilet and urinal flushing, based on Green Star Potable Water Calculator and 200 school days/year, for Buildings 3 and 4).
Annual Demand	$63.7 \mathrm{~kL} /$ year for irrigation

Treatment Node: Detention

Parameter	Input	
Node Name	11kL detention (Stage 1)	
Number of Tanks	1	
Total Tank System Properties		
Volume below overflow pipe	11kL	
Depth above overflow	0.2 m	
Surface Area	$5.5 \mathrm{~m}^{2}$	
Initial Volume	OkL	
Outlet Properties		
Overflow Pipe Diameter	50.00 mm	
Advanced Properties		
Orifice Discharge Coefficient	0.60 (Melbourne Water MUSIC Guidelines 2018)	
Number of CSTR Cells	2	
Pollutant k \& C* Values	Melbourne Water MUSIC Guidelines 2018	

Parameter	Input
Node Name	3 kL detention 9Stage 2)
Number of Tanks	1
Total Tank System Properties	3 kL
Volume below overflow pipe	0.2 m
Depth above overflow	$1.5 \mathrm{~m}^{2}$
Surface Area	0 kL
Initial Volume	50.00 mm
Outlet Properties	0.60 (Melbourne Water MUSIC Guidelines 2018)
Overflow Pipe Diameter	2
Advanced Properties	
Orifice Discharge Coefficient	
Number of CSTR Cells	

Parameter
Pollutant k \& C* Values

Input

Melbourne Water MUSIC Guidelines 2018

Treatment Node: Bioretention

Parameter	Input
Node Name	Building 1 Inground Raingardens $20.0 \mathrm{~m}^{2}$ (filtering water from the Building 1 Roof and Building 1 Paved Area)
Inlet Properties	
Low Flow By-pass	Om³/s (MUSIC Default)
High Flow By-pass	$100 \mathrm{~m}^{3} / \mathrm{s}$ (MUSIC Default) This copied document to be made av
Storage Properties	for the sole purpose of enabling
Surface Area	$20.0 \mathrm{~m}^{2} \quad$its consideration and review as part of a planning process under
Extended detention depth	0.30 m Planning and Environment Act 19
Filtration media depth	$0.5 \mathrm{~m} \quad$The document must not be used for purpose which may breach any
Advanced Properties	ennvrioht
Vegetation	Vegetated with effective nutrient removal plants
Lined Base	Yes
Weir Coefficient	1.70 (MUSIC Default)
Number of CSTR Cells	3 (MUSIC Default)

Parameter	Input
Node Name	Building 2 Planter Box Raingarden $15 \mathrm{~m}^{2}$ (filtering water from the Building 2 trafficable terrace)
Inlet Properties	$0 \mathrm{~m}^{3} / \mathrm{s}$ (MUSIC Default)
Low Flow By-pass	$100 \mathrm{~m}^{3} / \mathrm{s}$ (MUSIC Default)
High Flow By-pass	$15.0 \mathrm{~m}^{2}$
Storage Properties	0.30 m
Surface Area	0.5 m
Extended detention depth	Vegetated with effective nutrient removal plants
Filtration media depth	Yes
Advanced Properties	1.70 (MUSIC Default)
Vegetation	3 (MUSIC Default)
Lined Base	

Parameter	Input
Node Name	Garage Roof Planter Box Raingarden $2.0 \mathrm{~m}^{2}$ (filtering water from the garage roof)
Inlet Properties	
Low Flow By-pass	Om³/s (MUSIC Default)
High Flow By-pass	$100 \mathrm{~m}^{3} / \mathrm{s}$ (MUSIC Default)
Storage Properties	
Surface Area	$2.0 \mathrm{~m}^{2}$
Extended detention depth	0.30 m
Filtration media depth	0.5 m
Advanced Properties	
Vegetation	Vegetated with effective nutrient removal plants
Lined Base	Yes
Weir Coefficient	1.70 (MUSIC Default)
Number of CSTR Cells	3 (MUSIC Default)
Parameter	Input
Node Name	Driveway Inground Raingarden $2.0 \mathrm{~m}^{2}$ (filtering water from the driveway)
Inlet Properties	
Low Flow By-pass	Om³ ${ }^{\text {s }}$ (MUSIC Default)
High Flow By-pass	$100 \mathrm{~m} / \mathrm{s}$ (MUSIC Default)
Storage Properties	
Surface Area	$2.0 \mathrm{~m}^{2}$
Extended detention depth	0.30 m
Filtration media depth	0.5m
Advanced Properties	
Vegetation	Vegetated with effective nutrient removal plants
Lined Base	Yes
Weir Coefficient	1.70 (MUSIC Default)
Number of CSTR Cells	3 (MUSIC Default)

This copied document to be made available

ADVERTISED PLAN

for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any convrioht

Parameter	Input
Node Name	Building 4 North-East Roof Planter Box Raingarden $4.0 \mathrm{~m}^{2}$ (filtering water from the Building 4 North-East Roof)
Inlet Properties	
Low Flow By-pass	Om ${ }^{3} / \mathrm{s}$ (MUSIC Default)
High Flow By-pass	$100 \mathrm{~m}^{3} / \mathrm{s}$ (MUSIC Default)
Storage Properties	
Surface Area	$4.0 \mathrm{~m}^{2}$
Extended detention depth	0.30 m
Filtration media depth	0.5 m
Advanced Properties	
Vegetation	Vegetated with effective nutrient removal plants
Lined Base	Yes
Weir Coefficient	1.70 (MUSIC Default)
Number of CSTR Cells	3 (MUSIC Default)
Parameter	Input
Node Name	Building 4 South-East Roof Planter Box Raingarden $4.0 \mathrm{~m}^{2}$ (filtering water from the Building 4 South-East Roof)
Inlet Properties	
Low Flow By-pass	Om³ ${ }^{\text {s }}$ (MUSIC Default)
High Flow By-pass	$100 \mathrm{~m}^{3} / \mathrm{s}$ (MUSIC Default)
Storage Properties	
Surface Area	$4.0 \mathrm{~m}^{2}$
Extended detention depth	0.30 m
Filtration media depth	0.5 m
Advanced Properties	
Vegetation	Vegetated with effective nutrient removal plants
Lined Base	Yes
Weir Coefficient	1.70 (MUSIC Default)
Number of CSTR Cells	3 (MUSIC Default)

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any cnnvrioht

Parameter	Input
Node Name	Building 3 East Planter Box Raingarden $3.9 \mathrm{~m}^{2}$ (filtering water from the Building 3 Terrace/outdoor tiled area)
Inlet Properties	
Low Flow By-pass	Om ${ }^{3} \mathrm{~s}$ (MUSIC Default)
High Flow By-pass	$100 \mathrm{~m}^{3} / \mathrm{s}$ (MUSIC Default)
Storage Properties	
Surface Area	$3.9 \mathrm{~m}^{2}$
Extended detention depth	0.30 m
Filtration media depth	0.5 m
Advanced Properties	
Vegetation	Vegetated with effective nutrient removal plants
Lined Base	Yes
Weir Coefficient	1.70 (MUSIC Default)
Number of CSTR Cells	3 (MUSIC Default)
Parameter	Input
Node Name	Building 3 West Raingarden $2.0 \mathrm{~m}^{2}$ (filtering water from the Building 3 west roof area)
Inlet Properties	
Low Flow By-pass	Om³ ${ }^{\text {s }}$ (MUSIC Default)
High Flow By-pass	$100 \mathrm{~m}^{3} / \mathrm{s}$ (MUSIC Default)
Storage Properties	
Surface Area	$2.0 \mathrm{~m}^{2}$
Extended detention depth	0.30 m
Filtration media depth	0.5 m
Advanced Properties	
Vegetation	Vegetated with effective nutrient removal plants
Lined Base	Yes
Weir Coefficient	1.70 (MUSIC Default)
Number of CSTR Cells	3 (MUSIC Default)

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any cnnvrioht

Stormwater Runoff from Roof Catchment Areas

Treatment - Rainwater Tanks

Rainwater tanks are considered one of the most practical and effective mechanisms to reduce the quantity and velocity of stormwater leaving a site. Rainwater tanks will capture the stormwater that runs off the roof surfaces as per Figures 8-10 and store it for toilet/urinal flushing re-use throughout the redevelopment site, and for irrigation, effectively reducing the actual volume of water leaving the site. Instead of rainwater being considered as waste and a burden on the infrastructure, it is seen as a resource which has the double benefit of reducing demand on potable water supplies and as a stormwater mitigation initiative.

Treatment - Raingardens

Raingardens are low-maintenance stormwater filtration measures employed to reduce the concentration of pollutants within stormwater leaving a property. Stormwater is captured when running off hard surfaces, in this case the trafficable terrace areas of Buildings $2 \& 3$, suitable roof areas and the driveway, and subsequently flows through adjacent raingardens encountering various filtration media and appropriate plants ${ }^{2}$.

Figure 12: Example cross-sectional view of proposed planter box raingardens (Source: Melbourne Water²)

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.
The document must not be used for any purpose which may breach any ennvrioht

[^0]

This copied document to be made available for the sole purpose of enabling

- Juncus flavidus
- Melaleuca ericifolia
- Goodenia ovata
its consideration and review as part of a planning process under the Planning and Environment Act 1987.

The other 50% of raingarden area is to be planted with species which serdiveument must nothibensed for any with intermittent wet periods. Suitable native species include:
purpose which may breach any ranvrioht

- Anigozanthus sp.
- Calocephalus lacteus
- Dianella sp.
- Lomandra sp.
- Pattersonia occidentalis
- Wahlenbergia communis

Ensure to plant densely, minimum 6 plants per m^{2}.

- Following planting, cover with 50 mm gravel mulch around the plants. Where pipes enter each raingarden, place some large flat rocks to help spread the incoming water. Note that timber mulch is to be avoided, as it is liable to causing blockages.
- Finally, remove the temporary end cap on the overflow pipe and replace with a 90 mm PVC finishing collar with domed pipe grate.

Melbourne Water provides detailed advice on how to build a raingarden, which should be referenced by the landscaping contractor during construction:
https://www.melbournewater.com.au/water-data-and-education/environmental-issues/why-we-need-save-water/tips-saving-water/raingardens

Stormwater System Maintenance

The proposed stormwater management devices will require regular maintenance and monitoring to ensure they function as designed. An operation maintenance manual will be prepared for the site. The following section outlines key maintenance tasks and recommended frequency. The property owner will be responsible for continuous implementation of stormwater management device maintenance.

Rainwater Tank Systems

The standard maintenance activities that typically take place as part of an ongoing maintenance schedule for the rainwater tank system are as follows:

Rainwater tank system element	Frequency	Maintenance Task
Rainwater tanks - Minor service	Quarterly	- Check for any damage/compression - Check that supporting base is free of cracks and movement - Empty and clean first flush diverters - Remove and clean inlet and outlet/overflow strainers - Check correct operation of potable mains back up switch - Check that mesh covers have not deteriorated and intact - Check for mosquito infestation
Rainwater tanks - Major service	Every 2 years	- Clean tank to remove accumulated sludge
Pumps	Every 6 months	- Service water pump to prolong life
Roof and gutters	Every 6 months	- Clean out of leaves/debris

ADVERTISED PLAN

Raingardens

The standard maintenance activities that typically take place as part of an ongoing maintenance schedule for the raingardens are as follows:

Raingarden system element	Frequency	Maintenance Task	
Plants	As required	- \bullet	Replace plants when necessary Remove weeds as required
Gravel mulch	As required	-Repair erosion by rearranging gravel/rocks after initial heavy rain events if required	
Downpipe	As required	-Remove any sediment/build-up from the downpipe if blocked	
Roof and gutters	Every 6 months	- \quad Clean out of leaves/debris	

Disposal of Waste Materials

The accumulated pollutants found in the stormwater treatment systems must be handled and disposed of in a manner that is in accordance with all applicable waste disposal regulations. When scheduling maintenance, consideration must be made for the disposal of solid and liquid wastes.

Stormwater Runoff Treatment during the Construction Stage

Treatment - Various

Stormwater management in the construction stage will include measures which will be put in place to minimise the likelihood of contaminating stormwater discharge from the site as well as reduce the velocity of the flows generated from the building as it is being constructed. This will mean ensuring buffer strips are in place, and the site will be kept clean from any loose rubbish. More information is available from "Keeping Our Stormwater Clean - A Builder's Guide" by Melbourne Water³. The diagram below is an illustration of the various objectives which assist in minimising the impacts of stormwater runoff typical during the construction phase. Typical pollutants that are generated from a construction site during a rainfall event include:

- Dust
- Silt
- Mud
- Gravel
- Stockpiled materials
- Spills/oils
- Debris/litter

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.
The document must not be used for any purpose which may breach any ennvrioht

To reduce the impacts and minimise the generation of these pollutants the following measures are proposed. The symbols embedded within each image are typically used for Construction Environmental Management Plans.

Gravel Sausage filters - to be placed at the entrance of pits/side stormwater inlets. These permeable sacks will filter the suspended soils and sediments and any other litter carried by the stormwater to prevent the pollutants entering the system

ADVERTISED PLAN

[^1]Silt Fences Under Grates - Silt fence material may be placed under the grate of surface-entry inlets to prevent sediment from entering the stormwater system.

Temporary Rumble Grids - these are designed to open the tread on tires and vibrate mud and dirt off the vehicle (in particular the chassis). This will heavily minimise the amount of soil/dirt deposited on local streets where it can be washed (by rainfall or other means) into the stormwater drains.

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any
convrioht

ADVERTISED

PLAN
its consideration and review as
part of a planning process under the
Appendix 3 - Green Star Design \& As Built Scorecard
Green Star - Design \& As Built Scorecard

Project:	Simonds Catholic College	Round:	1	convrioht		Project Score (Targeted)	NA Targeted
Targeted Rating:	5 Star - Australian Excellence				100.0	66.0	0.0

[^2]| CATEGORY I CREDIT | AIM OF THE CREDIT / SELECTION | CODE | CREDIT CRITERIA |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Management | | | |

Responsible Construction Practices	To reward projects that use best practice formal environmental management procedures during construction.	7.0	Environmental Management Plan
		7.1	Environmental Management System
		7.2	High Quality Staff Support
Operational Waste	A. Performance Pathway	8A	Performance Pathway: Specialist Plan
		8 B	Prescriptive Pathway: Facilties

part of a planning process under the Ptanning and Environment Act 1987. The document must not be used for any ${ }^{1}$ purpose which may breach any

```
Total
```

| Indoor Environment Quality |
| :--- | :--- | :--- | :--- | :--- |
| Ind |

Indoor Pollutants	To recognise projects that safeguard occupant heath through the reduction in internal air pollutant levels.	13.1 Paints, 13.1.1 Paints, Adhesives and SealantsAdhesives,Sealantsand Carpets13.1.2 Carpets		A. Product Certification (1). Laboratory Testing IC. No Paints, Adhesives or Sealants Q A. Product Certification B B. Laboratory Testing ㅁC. No Carpets	1.00	1	0.00
		13.2	Engineered Wood Products	- A. Product Certification	1.00	1	0.00
				Q B. Laboratory Testing			
Thermal Comfort	To encourage and recognise projects that achieve high levels of thermal comfort.	14.1	Thermal Comfort	-A. Naturally Ventilited Spaces B. Mechanically Ventilated Spaces ㅁ. Residential Spaces	1	1	0.0
		14.2	Advanced Thermal Comfort	पA. Naturally Ventilated Spaces ㅁ. Be. Mechanically Ventilated Spaces ㅁ. C. Residential Spaces LD. Industrial spaces	1		0.0
Total					17	14	

Energy		22		
E. Reference Building Pathway	15D.0 Conditional Requirement: NABERS Pathway	-		-
	150.1 NABERS Energy Greenhouse Gas Emissions Reduction	0		-
	15D.2 Off-Site Renewables	0		-
	15D.3 15D.3.1 Transtion Plan	0		-
	Prescriptive 150.3.2 Fuel Switching	0		-
	- Measures 15D.3.3 On-Ste Storage	0		-
	15E.0 Conditional Requirement: Reference Building Pathway	-	Complies	-
This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any	15E. 1 GHG Emissions Reduction: Building Fabric	4	1	-
	15E. 2 GHG Emissions Reduction	16	6.1	-
	15 E .3 Off-Site Renewables	8		-
	15 E .4 District Services	7		-
	15E. $5 \quad$ 15E.5.1 ${ }^{\text {a }}$ Transition Plan	1		-
	Additional	2		-
	Measures 15E.5.3 On-Site Storage	1		-

Peak Electricity Demand Reduction	B. Performance Pathway	16A	Prescriptive Pathway: On-Site Energy Generation	0		
		16 B	Modelled Performance Pathway: Reference Building	2	1	-
Total				22	8.1	

Transport		10					
		17A	Performance Pathway		0		-
		178.1	Access by Public Transport		3	3	-
		178.2	Reduced Car Parking Provision		1	1	0.0
		178.3	Low Emission Vehicle Infrastructure	B. Parking for Electric Vehicles	1	1	0.0
		178.4	Active Transport Facilities		1		-
	B. Prescriptive Pathway	178.5	Walkable Neighbourhoods	A. Proximity to Amenities	1	1	-
Sustainable Transport		17C. 1	Access by Public Transport		0		-
Total					7	6	

Materials 14							
Life Cycle Impacts	B. Prescriptive Pathway - Life Cycle Impacts	19A. 1	Comparative Life Cycle Assessment		0		-
		19A. 2	Additional Reporting		0		-
		19B. 1 Concrete	198.1.1 Portland Cement Reduction		2	2	-
			19B.1.2 Water Reduction		0.5	0.5	-
			19B.1.3 Aggregates Reduction	B. Fine Aggregate Reduction	0.5	0.5	-
		19B. 2 Steel	A. Reduced Mass of Steel Framing	B. Reduction in Mass	1	1	-
		19 B .3	Building Reuse	198.3.1 Façade Reuse	2		-
				198.3.2 Structure Reuse	2		-
		19 B .4	Structural Timber	19B.4.0 Responsible Sourcing	-		-
				198.4.1 Reduced Embodied Impacts	3		-
Responsible Building Materials	To reward projects that include materials that are responsibly sourced or have a sustainable supply chain.	20.1	Structural and Reinforcing Steel	20.1.0 Responsible Steel Maker	-	Complies	-
				A. Responsible Steel Fabricator	1	1	0.0
		20.2	Timber	\square A. Certified Timber	1	1	0.0
				\square B. Reused Timber			
		20.3	Permanent Formwork, Pipes, Flooring, Blinds and Cables	B. Best Practice Guidelines for PVC	1	1	0.0
Sustainable Products	To encourage sustainability and transparency in product specification.	21.1	Product Transparency and Sustainability	A. Reused Products B. Recycled Content Products C. Environmental Product Declarations (EPDs) D. Third Party Certification E. Stewardship Programs	3	1	-
Construction and Demolition Waste	B. Percentage Benchmark	22.0	Reporting Accuracy	A. Compliance Verification Summary	-	Complies	-
		22 A	Fixed Benchmark		0		-
		22 B	Percentage Benchmark		1	1	-
Total					12	9	

This copied document to be made available for the sole purpose of enabling its_consideration_and_review_as

Land Use \& Ecology					6		
Ecological Value	To reward projects that improve the ecological value of their site.	23.0	Endangered, Threatened or Vulnerable Species	A. EPBC	-		-
		23.1	Ecological Value		3		-
Sustainable Sites	To reward projects that choose to develop sites that have limited ecological value, re-use previously developed land and remediate contaminate land.	24.0	Conditional Requirement		-	Complies	-
		24.1	Reuse of Land	A. Previously Developed Land	1	1	-
		24.2	Contamination and Hazardous Materials	\square A. Site Contamination	1		0.0
				\square B. Hazardous Materials			
Heat Island Effect	To encourage and recognise projects that reduce the contribution of the project site to the heat island effect.	25.1	Heat island Effect Reduction		1	1	-
Total					6	2	

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which mav breach any

Innovation				10		
Innovative Technology or Process	The project meets the aims of an existing credit using a technology or process that is considered innovative in Australia or the world.	30A	Innovative Technology or Process	10	1	
Market Transformation	The project has undertaken a sustainability initiative that substantially contributes to the broader market transformation towards sustainable development in	30B	Market Transformation			
Improving on Green Star Benchmarks	The project has achieved full points in a Green star credit and demonstrates a substantial improvement on the benchmark required to achieve full points.	30 C	Improving on Green Star Benchmarks		3	
Innovation Challenge	Where the project addresses an sustainability issue not included within any of the Credits in the existing Green Star rating tools.	30 D	Innovation Challenge			
Global Sustainability	Project teams may adopt an approved credit from a Global Green Building Rating tool that addresses a sustainability issue that is currently outside the scope of this Green	30 E	Global Sustainability			
Total				10	4	

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987.
The document must not be used for any purpose which may breach any
ennurioht

TOTALS	TARGETED
CORE POINTS	62.0
INNOVATION POINTS	4.0
NA POINTS	0.0
POINTS AVAILABLE	100.0
PROJECT SCORE	66.0

ADVERTISED

PLAN

Appendix 4 - Green Star VOC and Formaldehyde Limits

Table 5: Maximum Volatile Organic Compound Levels for construction materials (Sou Star Design and As Built v1.3 2019 Manual)
part of a planning process under the Planning and Environment Act 1987.
The document must not be used for any purpose which may breach any

Max TVOCnmwighfg/L of ready-to-use-product)

Paints, Adhesives and Sealants	
General purpose adhesives and sealants	50
Interior wall and ceiling paint, all sheen levels	16
Trim, varnishes and wood stains	75
Primers, sealers and prep coats	65
One and two pack performance coatings for floors	140
Acoustic sealants, architectural sealant, waterproofing membranes and sealant, fire retardant sealants and adhesives	250
Structural glazing adhesive, wood flooring and laminate adhesives and sealants	100
Carpets	
Total VOC limit	$0.5 \mathrm{mg} / \mathrm{m}^{2}$ per hour
4-PC (4-Phenylcyclohexene)	$0.05 \mathrm{mg} / \mathrm{m}^{2}$ per hour
ISO 16000 / EN 13419 - TVOC at three days	$0.5 \mathrm{mg} / \mathrm{m}^{2}$ per hour
ISO 10580 / ISO/TC 219 (Document N238) - TVOC at 24 hours	$0.5 \mathrm{mg} / \mathrm{m}^{2}$ per hour

Table 2: Maximum Formaldehyde levels for processed wood products. (Source: Green Building Council Australia - Green Star Design and As Built v1.3 2019 Manual)

Formaldehyde emission limit values for different testing methods

Test Method	Emission Limit/ Unit of Measurement
AS/NZS 2269:2004, testing procedure AS/NZS 2098.11:2005 method 10 for Plywood	$\leq 1 \mathrm{mg} / \mathrm{L}$
AS/NZS 1859.1:2004 - Particle Board, with use of testing procedure AS/NZS 4266.16:2004 method 16	$\leq 1.5 \mathrm{mg} / \mathrm{L}$
AS/NZS 1859.2:2004 - MDF, with use of testing procedure AS/NZS 4266.16:2004 method 16	$\leq 1 \mathrm{mg} / \mathrm{L}$
AS/NZS 4357.4 - Laminated Veneer Lumber (LVL)	$\leq 1 \mathrm{mg} / \mathrm{L}$
Japanese Agricultural Standard MAFF Notification No.701 Appendix Clause 3 (11) - LVL	$\leq 1 \mathrm{mg} / \mathrm{L}$
JIS A 5908:2003- Particle Board and Plywood, with use of testing procedure JIS A 1460	$\leq 1 \mathrm{mg} / \mathrm{L}$
JIS A 5905:2003 - MDF, with use of testing procedure JIS A 1460	$\leq 1 \mathrm{mg} / \mathrm{L}$
JIS A1901 (not applicable to Plywood, applicable to high pressure laminates and compact laminates)	$\leq 0.1 \mathrm{mg} / \mathrm{m}^{2} \mathrm{hr}$
ASTM D5116 (applicable to high pressure laminates and compact laminates)	$\leq 0.1 \mathrm{mg} / \mathrm{m}^{2} \mathrm{hr}$
ISO 16000 part 9, 10 and 11 (also known as EN 13419), applicable to high pressure laminates and compact laminates	$\leq 0.1 \mathrm{mg} / \mathrm{m}^{2} \mathrm{hr}$ (at 3 days)
ASTM D6007	$\leq 0.12 \mathrm{mg} / \mathrm{m}^{3}$
ASTM E1333	$\leq 0.12 \mathrm{mg} / \mathrm{m}^{3}$
EN 717-1 (also known as DIN EN 717-1)	$\leq 0.12 \mathrm{mg} / \mathrm{m}^{3}$
EN 717-2 (also known as DIN EN 717-2)	$\leq 3.5 \mathrm{mg} / \mathrm{m}^{2} \mathrm{hr}$

[^0]: 2 Please refer to "Planter box raingarden instruction sheet" and "Inground raingarden instruction sheet" from "How do I build a raingarden" section of Melbourne Water website https://www.melbournewater.com.au/water-data-and-education/environment-and-sustainability/why-we-need-save-water/tips-saving-water-0 accessed 30 September 2021. It is noted that the cross-sectional composition of the proposed raingardens will resemble Figures 11 \& 12.

[^1]: ${ }^{3}$ For copies please contact Melbourne Water on 131722.

[^2]: Green Star and the Green star certification logo are trade marks owned by Green Builing Councir of Australa (GBCA). They constiute valuable intellectual
 property and are protected by law. Any unauthorised use of the trade marks constitutes infringement of our righs and may result in legal action. Projects that
 are not registered cannot refer to Green Star. Once registered, a project may state they are targeting Green Star. Once certified, a project may promote their
 certification, and use the certification logo. The Marketing Rules and Style Guide sets out the rules for the use of the trade marks and provides marketing

