ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any copyright

Prepared for: Smith + Tracey Architects

SPAGS Drouin Campus P-2 and ELC -Stormwater Management Strategy

Author: Tony Spencer Job No: 220065 Reference No: 220065-004-SWMS-APS Revision: B Date: 5 December 2023

Contents

1	Introduction	1
2	Existing Conditions	1 1 1
3	Stormwater Management Strategy 3.1 Requirements of Clause 56.07-4 Of The VPP 3.2 Proposed Concept 3.2.1 Catchment	1 2 2 2
4	Stormwater Quality 4.1 Release Criteria 4.2 Stormwater Quality Strategy 4.3 Modelling Results	3 3 3 3
5	Conclusions and Recommendations	4
6	References	4

Appendices

Appendix A	Plans	
Appendix B Appendix C	Detention Calculation	ADVERTISED
, appointant o		ADVENIOLD

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any copyright

PLAN

1 Introduction

CREO Consultants (CREO) has been engaged by Smith & Tracey Architects to produce a Stormwater Management Strategy (SWMS) for the proposed school development on the property located at Part Lot 2 McGlone Road, Drouin.

This document will outline the proposed drainage strategy to ensure that 'best practice' guidelines for qualitative and quantitative treatment are met, in accordance with relevant authority requirements.

2 Existing Conditions

2.1 Site Characteristics and Catchments

The proposed redevelopment of the property located at Part Lot 2 McGlone Road, Drouin will involve the construction of a new school over a number of stages. The current land is undeveloped farmland while the proposed development has a site fraction impervious of 10%. Overland flow for larger storm events will be directed around the building via the paved and landscaped areas to along the current flow paths.

The proposed layout can be found in Appendix A.

2.2 Existing Catchment

The existing site at Part Lot 2 McGlone Road, Drouin to be development is approximately 13,970 m2 and is bounded by a proposed residential development on the east and farmland on all other sides.

As indictaed above the exising site is farmland and will be developed as a new school over a number of stages. The site was analysed in its current developed state in order to ascertain the amount of flow that will be generated in its current condition using the AR&R Rational Method. This will set the benchmark in which an increase in flow from the developed scenario will result in a requirement to attenuate back to its pre-developed state. Table 1 below outlines the estimated flows for the 100 year predevlopment flow and the 100 year post development flow for the site.

Table 1 Estimated Peak Flows for the Pre-Developed Site

Paramotor	100-year ARI	
Farameter	Pre-Development	Post Development
Peak Flows	699 l/s	1162 l/s

3 Stormwater Management Strategy

The stormwater management strategy proposed for the development at Part Lot 2 McGlone Road, Drouin has been developed to integrate the management of catchment run-off and the quality of the run-off in accordance with Section 53.18 of the Baw Baw Shire Planning Scheme Provisions. The primary objectives of this section relevant to this development focus on:

- Provide flood protection treatments for public safety and to protect downstream environments by retarding peak developed flows back to existing conditions; and
- Implementation of Water Sensitive Urban Design (WSUD) elements to treat post-developed pollutant-laden run-off to best practice guidelines

The stormwater drainage systems be designed to maximise benefits to the community based upon adequacy of design, the economy of construction and a high level of safety and amenity, including the provision to:

- Ensure hazardous situations do not arise on streets and footpaths;
- Ensure that all buildings in urban areas are protected against floodwaters;
- Limit rubbish and pollutants entering the stormwater drainage system;
- Integrate drainage works into urban planning development.

3.1 Requirements of Clause 56.07-4 Of The VPP

Clause 56.07-04 of the VPP requires urban runoff from new developments to meet best practice water quality and flow requirements. The objectives of Clause 56.07-4 of the VPP are:

- 1. To minimise damage to properties and inconvenience to residents from urban run-off.
- 2. To ensure that the street operates adequately during major storm events and provides for public safety.
- 3. To minimise increases in stormwater run-off and protect the environmental values and physical characteristics of receiving waters from degradation by urban run-off.

Standard C25 outlines the requirements to meet the Clause 56.07-4 of the VPP objectives and necessitates urban stormwater management systems must be designed and managed to the requirements of the relevant drainage authority.

In addition to other requirements, Standard C25 requires that urban stormwater management systems must be:

- 1. Designed to meet current best practice performance objectives for stormwater quality, as outlined in *Urban Stormwater Best Practice Environmental Management Guidelines* (Victorian Stormwater Committee 1999), as amended. The current water quality objectives are:
 - a. 80 per cent retention of typical urban annual suspended solids load;
 - b. 45 per cent retention of typical urban annual total phosphorus load; and
 - c. 45 per cent retention of typical urban annual total nitrogen load.
- 2. Designed to ensure that flows downstream of the site are restricted to predevelopment levels unless increased flows are approved by the relevant drainage authority and there are no detrimental downstream impacts.

3.2 **Proposed Concept**

3.2.1 Catchment

The development will be served by an underground stormwater system that will be designed for the 1% storm event. This system will contain an underground detention system that will manage and limit the flow from the 1% storm event to the pre-development flows. The total detention system volume is to be 185m3.

The new underground stormwater system will be connected to the LPOD as nominated by the Developer of the adjoining residential land. The underground stormwater system will be designed to service the planned development on the site. Due to site spatial constraints both the detention and proposed water treatment system will be inline underground systems. The external pavements will be designed to convey the 1% storm event to the LPOD as overland flow.

4 Stormwater Quality

4.1 Release Criteria

The objectives for on-site treatment relating to urban stormwater quality identify the best practice as the removal of Total Suspended Solids (TSS), Total Phosphorus (TP), Total Nitrogen (TN) and Gross Pollutants (GP). The values are set out in the Victorian Stormwater Committee (1999) *Urban Stormwater Best Practice Environmental Management Guidelines* and have been reproduced in Table 2. These stormwater quality objectives reflect the level of stormwater management necessary to meet the SEPP (Waters of Victoria) (EPA Victoria, 2003) requirements and have been adopted as the design criteria for WSUD treatments.

Table 2 Objectives for Environmental Management of Stormwater

Pollutant	Receiving Water Objective	Current Best Practice Performance Objective
Total Suspended Solids (TSS)	Comply with SEPP (e.g. not to exceed the 90 th percentile of 80mg/L)	80% retention of the typical urban annual load
Total Phosphorus (TP)	Comply with SEPP (e.g. base flow concentration not to exceed 0.08mg/L)	45% retention of the typical urban annual load
Total Nitrogen (TN)	Comply with SEPP (e.g. base flow concentration to not exceed 0.09 mg/L)	45% retention of the typical urban annual load
Gross Pollutants (GP)	Comply with SEPP (e.g. no litter in waterways)	70% retention of the typical urban annual load

4.2 Stormwater Quality Strategy

To achieve the best practice objectives shown in the above table, and underground water treatment system will be installed on the outlet discharge pipe from the site.

4.3 Modelling Results

For the proposed design of the underground water treatment system, a MUSIC model has been designed which incorporates the entire catchment.

Pollutant	Source Load (kg/yr)	Residual Load (kg/yr)	Load Removed (kg/yr)	% Reduction
Total Suspended Solids (TSS)	3750	749	3001	80
Total Phosphorus (TP)	6.03	1.49	4.54	75.2
Total Nitrogen (TN)	25.4	11	14.4	56.6
Gross Pollutants (GP)	379	17.2	361.8	95.5

Table 3 Source, Residual and Removal Loads for Catchment

5 Conclusions and Recommendations

This document provides a holistic approach to managing the stormwater infrastructure to be implemented for the proposed redevelopment of the mixed-use development located at Part Lot 2 McGlone Road, Drouin.

The report addresses the following key aspects:

- Retardation of 1% AEP storm events exiting the site to match the existing pre-developed conditions.
- Compliance with best practice stormwater quality treatment requirements for discharge to the existing drainage.
- For the catchment, it is recommended that the following infrastructure is implemented:
 - Installation of an underground detention systems totalling 185m3.
 - o Installation of a Altan Hydrosystem SHS.400/3 combined with a Altan Ecocepter Series 1500.

6 References

IEAust (2003), Australian Rainfall and Runoff Volume 2. Institute of Engineers Australia.

Melbourne Water Corporation (2010), MUSIC Guidelines: Recommended Input Parameters and modelling approaches for MUSIC Users.

Victorian Stormwater Committee (1999) Urban Stormwater Best Practice Environmental Management Guidelines.

Appendix A Plans

ADVERTISED PLAN

PROJECT ENGINEER A P SPENCER STATUS	PROJECT MANAGER A P SPENCER	DATE FIR	ST ISSUE 1/08/22	
CIVIL LAYO SCALE AT A1 1.200	UT PLAN SH		2 D P SPENC	
WARRAGUL VIC 3820				
PROJECT SPAGS DROU 150 BOWEN STREET	JIN			
Level 7, 176 Wellington I East Melbourne, VIC, Au Ph: (03) 9417 7393	CCONSULTANTS Parade Istralia 3002			
CLIENT Smith+ Melbourne 1 Yarra Street Hawthorn VIC 3122 t. 03 8808 6444 f. 03 9818 3977	Surrey Hills NSW 2010 t. 02 8317 4701	Brisban Unit 4/5 Navigatr Hendra t. 07 363 f. 07 363	e Dr Place QLD 4011 32 2550 32 2599	5
F10/1123TENDER ISSUEE30/10/23TENDER ISSUED10/10/23PRELIMINARY ISC13/09/22PRELIMINARY ISB9/09/22PRELIMINARY ISA1/08/22PRELIMINARY ISREVDATEREVISION DESCRI	SUE SUE SUE SUE PTION	LDC MH MH MH MH MH DRAWN	APS APS APS APS APS APS CHECKED	APS APS APS APS APS APS APS
G 17/1123 TENDER ISSUE			APS	APS
AD\	/ERTISED PLAN)		
This copied do for the so its consid part of a pl Planning an The documen purpose	cument to be made a ble purpose of enablin deration and review a anning process unde id Environment Act 1 it must not be used for which may breach an copyright	vailable ng as r the 1987. or any ny		
	This copied do for the sc its consic part of a pl Planning an The documer purpose Image: Comparison of the scheme is the sc	This copied document to be made a for the social early in a planning and environment Act The document must nuclei used for purpose which may breach at copyright CONCENTINE CONCENTION CONCENTION	<text></text>	<text><section-header><text></text></section-header></text>

CIVIL LAYOUT PLAN - SHEET 3

SCALE 1:200

0 8000 12000 16000 20000 SCALE: 1:200	PROJECT No. 220065	DRAWING No.	REVISION G
	ISSUED F NOT FOR C	OR TENDI	ER
[]	1:200 PROJECT ENGINEER PROJECT I A P SPENCER A P STATUS	M HALL A MANAGER DATE FIR	P SPENCER IST ISSUE 1/08/22
	CIVIL LAYOUT P		2
	DRAWING TITLE		
	PROJECT SPAGS DROUIN 150 BOWEN STREET WARDAGUE VIC 2020		
	Level 7, 176 Wellington Parade East Melbourne, VIC, Australia 300 Ph: (03) 9417 7393	D2	
	MelbourneSydney1 Yarra StreetStudio 60Hawthorn50 Holt SVIC 3122Surrey Hit. 03 8808 6444t. 02 831f. 03 9818 3977	Sey archite Brisbar Unit 4/5 Navigat Ils NSW 2010 7 4701 t. 07 36 f. 07 36	ects ne or Place QLD 4011 32 2550 32 2599
	A 1/08/22 PRELIMINARY ISSUE REV DATE REVISION DESCRIPTION CLIENT	DRAWN	APS APS
	G 17/11/23 TENDER ISSUE F 10/11/23 TENDER ISSUE E 30/10/23 TENDER ISSUE D 10/10/23 PRELIMINARY ISSUE C 13/09/22 PRELIMINARY ISSUE B 9/09/22 PRELIMINARY ISSUE	HB MH MH MH MH MH	APSAPSAPSAPSAPSAPSAPSAPSAPSAPSAPSAPSAPSAPS
	ADVER PL/	TISED AN	
BOUNDAR			
		pyrigit	
	for the sole p its considera part of a planni Planning and E The document m purpose whic	urpose of enabling tion and review as ng process under the tvironment Act 1987. Ist not be used for an th may breach any	Iy
-	This copied docum	ent to be made avails	ıble

Appendix B Detention Calculation

ADVERTISED PLAN

STORMWATER DETENTION CALCULATOR

CREO CONSULTANTS PTY LTD

ient:	Smith & Tracey			IFD STORM DATA	IFD IMPORTED CORRECTLY		En	gineer:	T Sp	Dencer	1 🛰	
oject:	SPAGS Drouin				COEFFICIENTS IMPORTED CORRECTLY		JOD	Number:	220	JU65		x o o
					https://data.arr-software.org/		[Date:	5/12	/2023		l eo
							Re	vision:		A	CON	SULTANTS
edeveloped Condi	ions:											
			Fraction Imperv	ious Calculator				Annu	al Exceedence Pro	obability		
tchment Area (ha)	13.97		Impervious Area (m ²)	10		63.2%	50.0%	20.0%	10.0%	5.0%	2.0%	1.0%
ne of Concentration (min)	7		Pervious Area (m ²)	13740	Intensity (mm/hr)	46.45	52.60	72.32	86.10	99.88	118.64	133.41
ction Impervious	0%		Total Area (m ²)	13750	Coefficient of Runoff	0.090	0.096	0.107	0.113	0.118	0.129	0.135
			Fraction Impervious	0%	Q (m3/s)	0.162	0.195	0.300	0.376	0.458	0.596	0.699
eveloped Condition	<u>s:</u>		Fraction Impen	ious Calculator	-			Annu	al Exceedence Pr	abability		
tchment Area (ha)	13.97	1	Impervious Area (m ²)	13300	_	63 2%	50.0%	20.0%	10.0%	5.0%	2.0%	1.0%
ne of Concentration (min)	7	1	Pervious Area (m²)	126450	Intensity (mm/br)	46.45	52.60	72.32	86.10	99.88	118 64	133.41
ction Impervious	10%		Total Area (m²)	139750	Coefficient of Runoff	0.150	0 159	0 178	0.187	0.196	0.215	0.224
	10/0		Fraction Imponious	10%		0.100	0.100	0.400	0.625	0.761	0.000	1 160
			r laction impervious	10%	G (III3/S)	0.210	0.024	0.433	0.020	0.701	0.330	1.102
STC Retard Flows Predeveloped	RAGE CALCULATION	AEP m³/s										
STC Retard Flows Predeveloped <u>OR</u> Restrict flow	RAGE CALCULATION p to: 1% clow: 0.699 rs to: 1	AEP m³/s m³/s										
STC Retard Flows Predeveloped <u>OR</u> Restrict flow	RAGE CALCULATION pto: 1% ilow: 0.699 vis to: STORAGE F	AEP m³/s m³/s REQUIRED (m³):	<u>186.453</u>	Using the	Boyd's Method							
STC Retard Flows i Predeveloped <u>OR</u> Restrict flow FROM TABLE BELC	RAGE CALCULATION p to: 1% rlow: 0.699 W: STORAGE F Flow Rate In (I/s)	AEP m³/s m³/s REQUIRED (m³): Volume In (m³)	<u>186.453</u> Volume Out (m ³)	Using the Storage Required (m ³)	<u>Boyd's Method</u>							
STC Retard Flows i Predeveloped <u>OR</u> Restrict flow FROM TABLE BELC Storm Duration (min)	RAGE CALCULATION ip to: 1% iow: 0.699 W: STORAGE F Flow Rate In (I/s) 2055.013	AEP m ³ /s m ³ /s REQUIRED (m ³): Volume In (m ³)	186.453 Volume Out (m²) 41.960	Using the Storage Required (m [*]) 81.341	Boyd's Method							
STC Retard Flows 1 Predeveloped <u>OR</u> Restrict flow FROM TABLE BELC Storm Duration (min) 1 2	RAGE CALCULATION ip to: 1% iow: 0.699 w: STORAGE F W: STORAGE In (I/s) 2065.013 1602.214	AEP m ³ /s m ³ /s REQUIRED (m ³): Volume In (m ³) 123.301 192.266	186.453 Volume Out (m³) 41.960 83.920	Using the Storage Required (m ^a) 81.341 108.345	Boyd's Method							
Storn Duration (min) 1 2 3	Figure 3 Figure 3	AEP m ³ /s m ³ /s REQUIRED (m ³): Volume In (m ³) 122.301 192.266 263.320	186.453 Volume Out (m ²) 41.960 83.920 125.880	Using the Storage Required (m³) 81.341 108.345 137.440	Boyd's Method							
STC Retard Flows I Predeveloped <u>OR</u> Restrict flow FROM TABLE BELC Storm Duration (min) <u>1</u> 2 3 4	Figure 100 1% 100: 1% 100: 1% 100: 0.699 W: STORAGE F Flow Rate In (I/s) 2055.013 1002.214 1462.891 1375.814 147.814	AEP m³/s m³/s REQUIRED (m³): Volume In (m³) 123.301 192.266 263.320 330.195	Volume Out (m³) 41.960 83.920 125.880 167.841	Using the Storage Required (m³) 81.341 108.345 137.440 162.355	Boyd's Method							
STC Retard Flows I Predeveloped <u>OR</u> Restrict flow FROM TABLE BELC Storm Duration (min) 1 2 3 4 5 5	Figure 100 Store 1% 0.699 1% 0.699 W: STORAGE F 2055.013 1602.214 1462.891 1375.891 1297.445 1297.445	AEP m³/s m³/s REQUIRED (m³): Volume In (m³) 123.301 192.266 263.320 263.320 263.320 380.195 389.233	186.453 Volume Out (m [*]) 41.960 83.920 125.880 167.841 209.801	Using the Storage Required (m [*]) 81.341 108.345 137.440 162.355 179.433	Boyd's Method							
Storm Duration (min) Predeveloped <u>OR</u> Restrict flow FROM TABLE BELC Storm Duration (min) 1 2 3 4 5 10	Figure 100 Storage W: STORAGE F W: STORAGE F 2055.013 1602.214 1462.891 1375.814 1297.445 1010.091	AEP m ³ /s m ³ /s REQUIRED (m ³): Volume In (m ³) 123.301 192.266 263.320 263.320 330.195 389.233 600.055	186.453 Volume Out (m*) 41.960 83.920 125.880 167.841 209.801 416.601	Using the Storage Required (m ²) 81.341 108.345 137.440 162.355 179.433 186.453	Boyd's Method			This c	opied d	ocumen	t to be	made avai
Storn Duration (min) 1 Constant Files Constant Consta	Flow STORAGE F W: STORAGE F W: STORAGE F 2055 013 1602.214 1462.891 1375.814 1297.445 1010.091 823.747	AEP m³/s m³/s REQUIRED (m³): Volume In (m³) 123.301 192.266 283.320 330.195 389.233 606.065 741.372	186.453 Volume Out (m*) 41.960 83.920 125.880 167.841 209.801 419.601 629.402	Using the Storage Required (m ³) 81.341 108.345 137.440 162.355 179.433 186.453 111.970	Boyd's Method			This c	opied d	ocumen	t to be	made avai
STC Retard Flows i Predeveloped <u>OR</u> Restrict flow FROM TABLE BELC Storm Duration (min) 1 2 3 4 5 10 15 20	Figure 100 Store 0000 1% 0.699 0.699 vis to: STORAGE F W: STORAGE F 2055.013 1602.214 1462.891 1375.814 1297.445 1010.091 823.747 700.096	AEP m³/s m³/s REQUIRED (m³): Volume In (m³) 123.301 192.266 263.320 3330.195 3389.233 606.055 741.372 840.117	Volume Out (m²) 41.960 83.920 125.880 167.841 209.801 419.601 629.402 83.920	Using the Storage Required (m³) 81.341 108.345 137.440 162.355 179.433 186.453 111.970 0.914	Boyd's Method			This c	opied d	ocumen sole pur	t to be pose of	made avai f enabling
STC Retard Flows I Predeveloped <u>OR</u> Restrict flow FROM TABLE BELC Storm Duration (min) 1 2 3 4 5 10 15 15 20 25	Figure 3 Figure 3	AEP m ³ /s SEQUIRED (m³): Volume In (m ³) 123.301 192.266 263.320 263.320 263.320 389.233 606.055 741.372 741.372 74.1372 74.1372	Volume Out (m³) 41.960 83.920 125.880 167.841 209.801 419.601 629.402 839.203 1049.003	Using the Storage Required (m [*]) 81.341 108.345 137.440 162.355 179.433 186.453 111.970 0.914 -132.084	Boyd's Method			This c	opied d for the s	ocumen sole pur	t to be pose of	made avai f enabling
Storm Duration (min) Comparison of the second seco	Flow Rate In (I/s) 2055.013 1602.214 176.214 1602.214 1602.214 1602.214 1602.214 1602.214 1602.214 1602.214 1602.214 1602.214 1602.214 1602.214 1602.214 1602.214 1602.214 1602.214 1602.214 1602.214 1602.214 1297.445 1010.091 823.747 700.098 611.279 544.230	AEP m³/s m³/s REQUIRED (m³): Volume In (m*) 123.301 192.266 283.320 330.195 389.233 389.233 380.235 389.233 300.055 741.372 840.117 840.117 840.1172	186.453 Volume Out (m³) 41.960 83.920 125.880 167.841 209.801 419.601 629.402 839.203 1049.003 1258.804	Using the Storage Required (m ^a) 81.341 108.345 137.440 162.355 179.433 186.453 111.970 0.914 -132.084 -279.190	Boyd's Method			This c	opied d for the s its cons	ocumen sole pur ideratio	t to be pose of on and	made avai f enabling review as
STC Retard Flows i Predeveloped <u>OR</u> Restrict flow FROM TABLE BELC Storm Duration (min) 1 2 3 4 5 10 15 20 25 30 45	Flow STORAGE F W: STORAGE F W: STORAGE F 2055.013 1602.214 1462.81 1375.814 1297.445 1010.091 823.747 700.098 611.279 544.230 4162.27 416.227	AEP m³/s m³/s SEQUIRED (m³): Volume In (m³) 123.301 192.266 263.320 330.195 389.233 606.055 741.372 840.117 916.919 915.914 1123.814	Volume Out (m³) 41.960 83.920 125.880 167.841 209.801 419.601 629.402 839.203 1049.003 1258.804 1888.206	Using the Storage Required (m³) 81.341 108.345 137.440 162.355 179.433 186.453 111.970 0.914 -132.084 -279.190 -764.393	Boyd's Method			This c	opied d for the s its cons rt of a r	ocumen sole pur ideratio	t to be pose of on and	made avai f enabling review as ss under th
STC Retard Flows i Predeveloped <u>OR</u> Restrict flow FROM TABLE BELC Storm Duration (min) 1 2 3 4 5 10 15 5 20 25 30 45 60	Figure 3 Figure 3	AEP m³/s m³/s EQUIRED (m³): Volume In (m³) 123.301 192.266 263.320 263.320 263.320 369.233 600.055 369.233 600.055 741.372 840.117 916.919 973.614 123.814 123.5098	Volume Out (m²) 41.960 83.920 125.880 167.841 208.801 419.601 629.402 839.203 1049.003 1258.804 1888.206 2517.608	Using the Storage Required (m ³) 81.341 108.345 137.440 162.355 179.433 116.453 111.970 0.914 -132.084 -279.190 -764.393 -1282.511	Boyd's Method			This c	opied d for the s its cons rt of a p	ocumen sole pur ideratic planning	t to be pose of on and g proce	made avai f enabling review as ss under th
STC Retard Flows 1 Predeveloped OR Restrict flow FROM TABLE BELC Storm Duration (min) 1 2 3 4 5 10 15 20 25 30 45 60 90	Figure 3 Figure 3	AEP m³/s m³/s EQUIRED (m³): Volume In (m*) 123.301 192.266 263.320 330.195 338.233 606.055 741.372 741.372 916.919 979.614 1123.814 1123.5098 1410.645	Volume Out (m*) 41.960 83.920 125.880 167.841 209.801 419.601 629.402 839.203 1049.003 1258.804 1888.206 2517.608 3776.413	Using the Storage Required (m ^a) 81.341 108.345 137.440 162.355 179.433 186.453 111.970 0.914 -132.084 -279.190 -764.393 -1282.5111 -2365.768	Boyd's Method			This c pa Pla	opied d for the s its cons rt of a p unning a	ocumen sole pur ideratio planning nd Env	t to be pose of on and g proce ironme	made avai f enabling review as ss under th ent Act 198'
STC Retard Flows I Predeveloped <u>OR</u> Restrict flow FROM TABLE BELC Storm Duration (min) 1 2 3 4 5 10 15 20 25 30 45 60 90 120	Flow 1% 0.699 0.699 W: STORAGE F W: STORAGE F 2055.013 1602.214 1462.891 1375.814 1297.445 1010.091 823.747 700.098 611.279 544.230 416.227 343.083 261.230 215.951	AEP m³/s m³/s EQUIRED (m³): Volume In (m³) 123.301 192.266 263.320 330.195 389.233 606.055 741.372 840.117 916.919 979.614 1123.814 1123.814 1123.814 1123.814 1124.814 1124.814	186.453 Volume Out (m*) 41.960 83.920 125.880 167.841 209.801 419.601 629.402 839.203 1049.003 1258.804 1888.206 2517.608 3776.413 5035.217	Using the Storage Required (m³) 81.341 108.345 137.440 162.355 179.433 186.453 111.970 0.914 -132.084 -279.190 -764.393 -1282.511 -2365.768 -3480.373	Boyd's Method			This c pa Pla	opied d for the s its cons rt of a p unning a	ocumen sole pur ideratio planning nd Env	t to be pose of on and g proce ironme	made avai f enabling review as ss under th ent Act 198 o under for a
STC Retard Flows I Predeveloped OR Restrict flow FROM TABLE BELC Storm Duration (min) 1 1 2 3 4 5 10 15 20 25 30 45 60 90 120 180	Flow STORAGE F W: STORAGE F W: STORAGE F 2055.013 1602.214 1462.891 1375.814 1297.445 1010.091 823.747 700.038 611.279 544.230 416.227 343.083 261.230 215.961 167.188 167.188	AEP m³/s m³/s REQUIRED (m³): Volume In (m³) 123.301 192.266 263.320 3330.195 3389.233 606.055 741.372 741.372 741.372 741.372 741.372 840.117 916.919 979.614 1123.814 1123.814 1123.5088 1410.645	Volume Out (m²) 41.960 83.920 125.880 167.841 209.801 419.601 639.203 1049.003 125.8804 1888.206 2617.608 3776.413 5035.217 7552.825	Using the Storage Required (m³) 81.341 108.345 137.440 162.355 179.433 186.453 111.970 0.914 -132.084 -279.190 -764.393 -1282.511 -2365.768 -3480.373 -5747.200	Boyd's Method			This c pa Pla The	opied d for the s its cons rt of a p unning a docume	ocumen sole pur ideratic blanning nd Env ent mus	t to be pose of on and g proce ironme t not be	made avai f enabling review as ss under th ent Act 198 e used for a
STC Retar Flows Predeveloped <u>OR</u> Restrict flov FROM TABLE BELC Storm Duration (min) 1 2 3 4 5 10 15 20 25 30 45 5 60 90 120 180 180 270	Figure 3 Figure 3	AEP m ³ /s SEQUIRED (m³): Volume In (m ³) 123.301 192.266 263.320 263.320 263.320 389.233 606.055 741.372 74.841 1123.814 1123.814 1123.814 1123.814 1123.814 1123.814 1125.699 1410.645 1554.844 1556.825 2130.073	Volume Out (m*) 41.960 83.920 125.880 167.841 209.801 419.601 629.402 839.203 1049.003 1258.804 1882.206 2587.706 3776.413 5035.217 7552.825 11329.238	Using the Storage Required (m ²) 81.341 108.345 137.440 162.355 179.433 186.453 111.970 0.914 -132.084 -279.190 -764.393 -1282.511 -2365.768 -3480.373 -5747.200 -9199.164	Boyd's Method			This c pa Pla The	opied d for the s its cons rt of a p inning a docume	ocumen sole pur ideratic planning nd Env ent mus	t to be pose of on and g proce ironme t not be may be	made avai f enabling review as ss under th ent Act 198 e used for a

540

720

1080

1440

1800

2160 2880

4320

5760

7200

8640

10080

89.689

76.889

61.650

52.333

45.715

40.665

33.438

24.556

19.157

15.674

13.149

11.320

2905.928

3321.598

3994.946

4521.586

4937.256

5270.169

5778.001

6364.829

6620.626

6771.095

6816.235

6846.329

22658.475

30211.300

45316.951

60422.601

75528.251

90633.901

120845.202

181267.803

241690.404

302113.005

362535.606

422958.207

-19752.547

-26889.702

-41322.005

-55901.015

-70590.995

-85363.733

-115067.201

-174902.974

-235069.778

-295341.910

-355719.371

-416111.878

copyright

Appendix C MUSIC Model

ADVERTISED PLAN

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any copyright Treatment Train Effectiveness - LPOD Flow (ML/yr) Total Suspended Solids (kg/yr) Total Phosphorus (kg/yr) Total Nitrogen (kg/yr) Gross Pollutants (kg/yr)

ADVERTISED PLAN

ources	Residual Load	% Reduction
10.4	10.4	0
3730	625	83.2
6.05	1.05	82.6
25.6	10.6	58.7
379	0	100