

Letter of Attestation

Document: 80008629

Master Contract: N/A

Project: 80040846

Date Issued: July 22, 2020

Issued to: Contemporary Amperex Technology Co., Limited No. 2 Xingang Road, Zhangwan Town, Jiaocheng District Ningde City, Fujian Province 352100, P. R. China Attention:

CSA Group hereby confirms that it has completed an evaluation of: Li-ion Battery Cell, models 001CB310, CB310 and CB2W0

CSA Group hereby attests that the products identified above and described in test report 80008629 dated Jan 29, 2019 complies with the following test, to the extent applicable:

UL 9540A Test Method for Evaluating Thermal Runaway Fire Propagation in Battery Energy Storage Systems, 3rd edition, Revision Date Jun 15, 2018 Section 6 Cell Level testing.

ADVERTISED PLAN Issued by:

CSA Group

THIS LETTER OF ATTESTATION DOES NOT AUTHORIZE THE USE OF THE CSA MARK ON THE SUBJECT PRODUCTS.

QUOTATIONS FROM THE TEST REPORT OR THE USE OF THE NAME OF THE CANADIAN STANDARDS ASSOCIATION AND CSA GROUP OR ITS REGISTERED TRADEMARK, IN ANY WAY, IS NOT PERMITTED WITHOUT PRIOR WRITTEN CONSENT OF CSA GROUP.

Descriptive Report and Test Results

MASTER CONTRACT: N/A REPORT: 80008629 PROJECT: 80040846

Edition 1:Jan 29, 2020; Project 80008629Edition 2:July 22, 2020; Project 80040846Contents:Letter of Attestation - Page 1 to 1

Description and Tests - Pages 1 to 28

PRODUCTS

Li-ion Battery Cell, models 001CB310, CB310 and CB2W0, nominal voltage 3.2V, 280Ah

APPLICABLE REQUIREMENTS

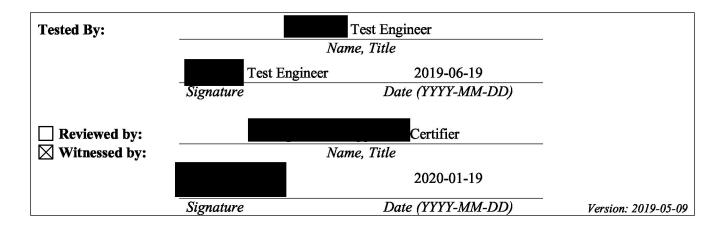
UL 9540A - Test Method for Evaluating Thermal Runaway Fire Propagation in Battery Energy Storage Systems, 3rd edition

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any convright

The results relate only to the items tested. This report shall not be reproduced, except in full, without the approval of CSA Group.

ADVERTISED

PLAN


DESCRIPTION AND TEST REPORTS

Testing Laboratory Name:	CCIC-CSA Intern	CCIC-CSA International Certification Co., Ltd. Kunshan Branch				
Address:	Building 8, Tsinghua Science Park, No. 1666 Zu chongzhi Rd (S), Kunshan, Jiangsu (215347)					
Testing Program:	Custom Test: Note: Mark " X "	Latter of Attestation in applicable test program blo	X	Testing Only		

If tests were performed at another facility, then described below:

Testing Laboratory Name:	Contemporary Amperex Technology Co., Limited	
Address:	No. 2 Xingang Road, Zhangwan Town, Jiaocheng District	
	Ningde City, Fujian Province 352100, P. R. China	
Facility Qualification Number:	N/A	

	As above / or describe otherwise
Customer:	Contemporary Amperex Technology Co., Limited
Address:	No. 2 Xingang Road, Zhangwan Town, Jiaocheng District
	Ningde City, Fujian Province 352100, P. R. China

Product Details	
Test Request:	Cell Level Testing
1	Module Level Testing
	Unit Level Testing
	Installation Level Testing
Manufacturer	Cell: Contemporary Amperex Technology
	Co., Limited
	Module:
	Unit:
Brand name / Trademark	Cell: N/A
	Module:
Model Number	Cell: 001CB310, CB2W0, CB310
	Module:
	Unit:
Date of receipt of test sample(s)	2019-06-07
Cell/Battery Type	Li-ion, LFP
Approximate Dimension (mm)	Cell: 174.0*207.2*71.7mm
	Module:
	Unit:
Mass (g)	Cell: see page 5
	Module:
DUT Sample/Serial Number	Cell: See page 5
	Module:
DUT Nominal Voltage Rating (V)	Cell: 3.2V
	Module:
	Cell: 280Ah
DUT Nominal Charge Capacity Rating (Ah)	Module:
Fire Mitigation Stratagies	Water:
Fire Mitigation Strategies:	Other (Specify):
(For installation level testing)	\boxtimes N/A
Additional Information	N/A

Model Difference: Cell model CB2W0 is identical to model 001CB310 except for the rated charging/discharging current declared, documented in UL with project No. 4789439215, herein, test on model 001CB310 was considered to representative of model CB2W0. JZ 2020-04-16

Models CB2W0 and CB310 are identical to model 001CB310 except for model names, and the declared ratings of pulse charging and discharging current.

© 2018 CSA Group. All rights reserved.

THE TESTING SPECIFIED IN THIS PROCEDURE IS INHERENTLY DANGEROUS

DO NOT ATTEMPT TO PERFORM THIS TEST UNLESS YOU HAVE BEEN PROPERLY TRAINED REGARDING SAFELY WORKING WITH THE HAZARDS INVOLVED

Important Test Consideration:

- As some batteries expose in test described above, it is important that personal be protected from the flying fragments, explosive force, and sudden release of heat, chemical burns, and noise result from such explosions. The test area is to be well ventilated to protect personal from possible harmful fumes or gases.
- Temperature of the surface of the battery casing shall be monitored during the tests described above. All personal involve in the testing of batteries are to be instructed never to approach a battery until the surface temperature return to ambient temperature.
- Test shall be conducted in separate room or equipped with an adequate safety barrier separating the test area from observer.

UL 9540 A – Definition

- <u>"BATTERY ENERGY STORAGE SYSTEM (BESS)"</u> - Stationary equipment that receives electrical energy and then utilizes batteries to store that energy for later use in order to supply electrical energy when needed. The BESS consists of one or more modules, a power conditioning system (PCS) and balance of plant components.

a) INITIATING BATTERY ENERGY STORAGE SYSTEM UNIT (INITIATING BESS) – A BESS unit which has been equipped with resistance heaters in order to create the internal fire condition necessary for the installation level test (Section 8).

b) TARGET BATTERY ENERGY STORAGE SYSTEM UNIT (TARGET BESS) – The enclosure and/or rack hardware that physically supports and/or contains the components that comprise a BESS. The target BESS unit does not contain energy storage components, but serves to enable instrumentation to measure the thermal exposure from the initiating BESS.

- "<u>CELL</u>" - The basic functional electrochemical unit containing an assembly of electrodes, electrolyte, separators, container, and terminals. It is a source of electrical energy by direct conversion of chemical energy.

- "<u>DUT</u>" – Device under test.

- "<u>ELECTRICAL RESISTANCE HEATERS</u>" – Devices that convert electrical energy supplied from a laboratory source into thermal energy.

- "<u>FLEXIBLE FILM HEATERS</u>" – Electrical resistance heaters of a film, tape or otherwise thin sheet like construction that easily conform to the surface of cells.

- "<u>MODULE</u>" – A subassembly that is a component of a BESS that consists of a group of cells or electrochemical capacitors connected together either in a series and/or parallel configuration (sometimes referred to as a block) with or without protective devices and monitoring circuitry.

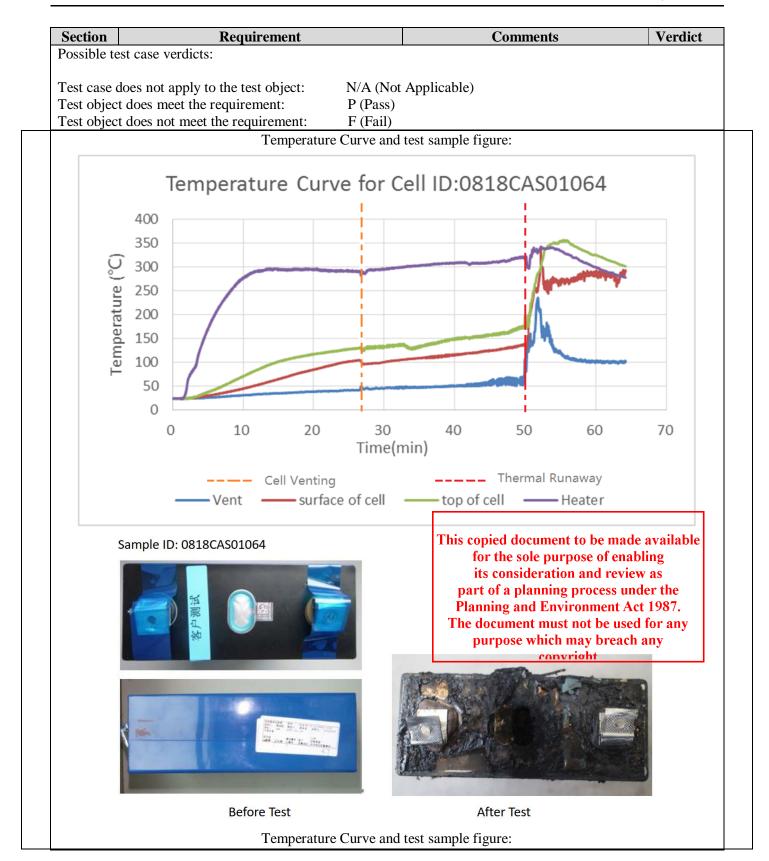
- "<u>STATE OF CHARGE (SOC)</u>" – The available capacity in a BESS, pack, module or cell expressed as a percentage of rated capacity.

- "<u>THERMAL RUNAWAY</u>" – The incident when an electrochemical cell increases its temperature through selfheating in an uncontrollable fashion. The thermal runaway progresses when the cell's generation of heat is at a higher rate than the heat it can dissipate. This may lead to fire, explosion and gas evolution.

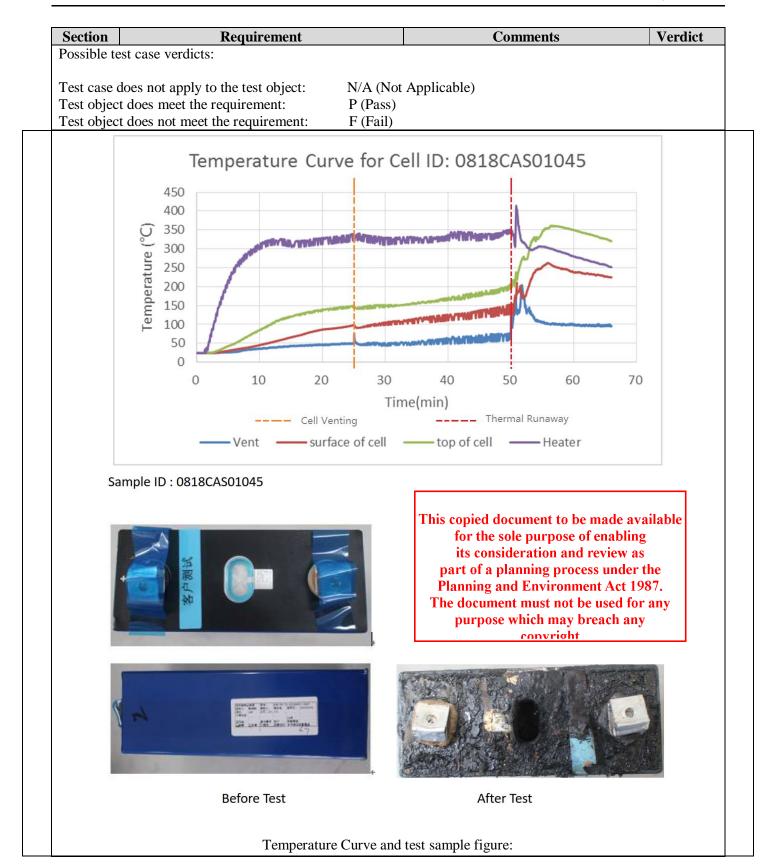
- "<u>UNIT</u>" – A frame, rack or enclosure that consists of a functional BESS which includes components and subassemblies such a cells, modules, battery management systems, ventilation devices and other ancillary equipment.

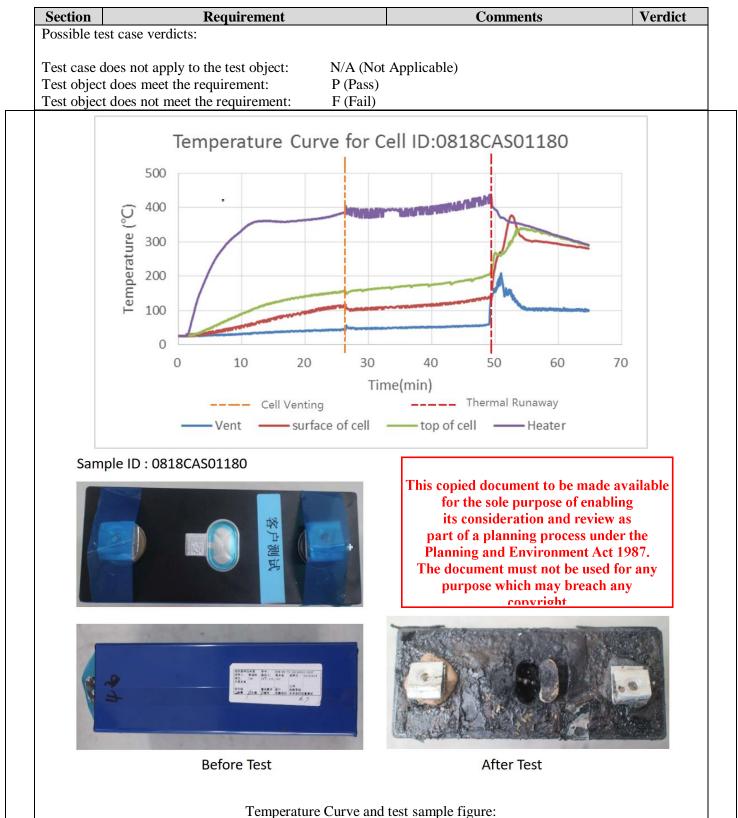
<u>UL 9540A Third Edition, Dated June 15, 2018 - Test Method for Evaluating Thermal Runaway Fire</u> <u>Propagation in Battery Energy Storage Systems</u>

Section	Requirement	Test (T) / Waive (W) / Not App. (N/A)	Comments			
1	Scope: The test methodology in this document evaluates the fire characteristics of a battery energy storage system that undergoes thermal runaway.					
	Fire protection requirements no appropriate installation codes.	ot related to batt	ery energy storage system	n equipment are	covered by	
	Section 6: Cell Level Test	Τ	Chemistry: Li-ion Physical Format: Prisma Energy (Whr): 896 Capacity (Ahr): 280 Nominal Voltage (Vdc) Approximate Dimension 174.0*207.2*71.7mm Weight (g): See below: Sample ID 0818CAS01064 0818CAS01045 0818CAS01180 0818CAS01047	: 3.2	nt, g After Test 4153.6 4146.1 4149.0 4153.2	
	Section 7: Module Level Test	N/A	Cell Comply With UL 1 Yes Cell with UL approval u Project number 478905 Module Level testing no	1973 Requiremen under File MH62 4368.	nt (Yes/No) : 2898, Vol.1,	
	Section 8: Unit Level Test	N/A	Unit Level testing not re	equested by man	ufacturer	
	Section 9: Installation Level Test (With fire mitigation strategies)	N/A	Installation Level testing manufacturer	g not requested b	у	

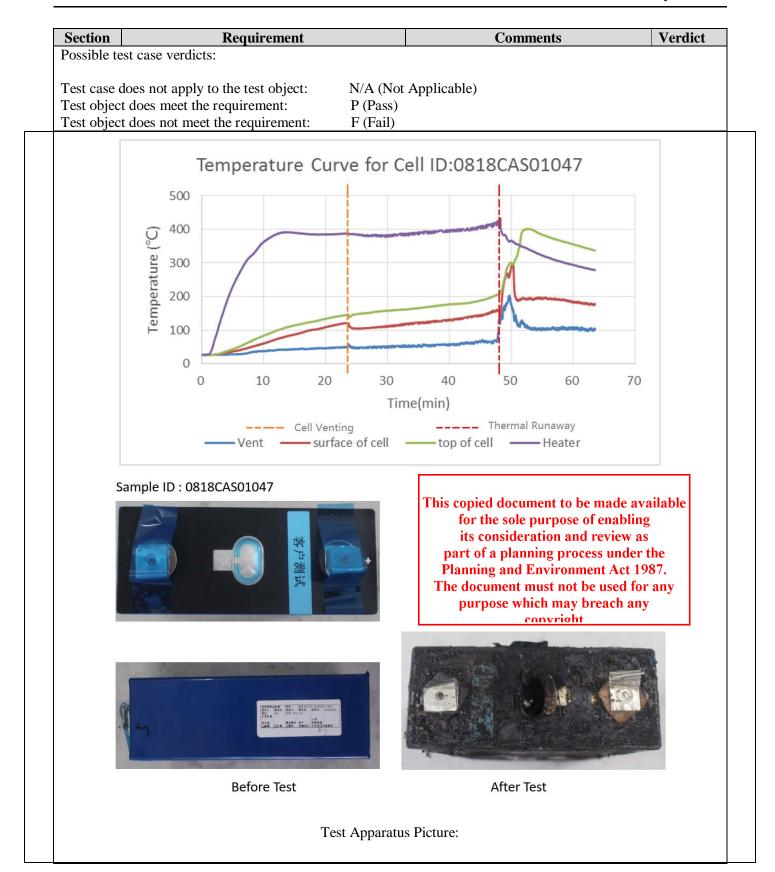


ADVERTISED PLAN


UL 9540A Third Edition, Dated June 15, 2018 - Section 6 Cell Level Testing


Section	Requirement	Comments	Verdict
Possible t	est case verdicts:		
Test objec	does not apply to the test object:N/A (Notct does meet the requirement:P (Pass)ct does not meet the requirement:F (Fail)	Applicable)	
6	Cell Level Testing		Р
6.1	Cell Sample conditioned for min 2 charge (100% SOC) - discharge (Specified end of discharge voltage) cycle as per manufacturer specified method.	Manufacture recommended charge/discharge method: Charging Procedure: CC-CV Charging Voltage (V): 3.65	Р
	This copied document to be made available for the sole purpose of enabling its consideration and review as	Charging Current (A): 140 Charging End Condition (A): 14	
	part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any	Discharging Procedure: CC Discharging Current (A): 140 End of Discharge Voltage (V): 2.5	
	Cells under test are functional after charge discharge cycle.	Conformed	Р
	Ambient temperature during cell conditioning and during test Note: Ambient indoor laboratory conditions shall be 25 ±5°C (77 ±9°F) and 50 ±25% RH at the initiation of the test.	Temperature(°C): 24.5 to 24.5 Humidity (% RH): 60 to 70	Р
	The tested cells have 100% SOC at the start of the test. The samples were allowed to stabilize for a minimum of one hour prior to testing.	Conformed	Р
6.2	Propensity of cell to exhibit thermal runaway demonstrated by externally applied Film Heater	Additional method used: External heating method with ceramic heater 1 PCS, rated 220/230V, 500W.	N/A
	Surface heating rate maintained at 5°C (9°F) to 7°C (12.6°F) per minute	The heating rate is greater than 7°C per minute, thermal runaway was triggered, with total 4 cell samples tested.	N/A
	Other alternate method used to exhibit thermal runaway	Thermal runaway was triggered on total 4 cells using external heating methods in a 82L vessel one by one, with initial gases inside the vessel measured, released gases after thermal runaway were collected, temperature	Р

Section		Require	ment	C	omments	Verdict
Possible te	est case					
Test objec	t does	ot apply to the test of meet the requirement not meet the require	nt: P (Pas			
1050 00500		not moet the require	r (run	, , , , , , , , , , , , , , , , , , , ,	l first vented and	
					y triggered monitored	
				and also gas cor	nposition measured.	
	thern	perature measureme nocouple junction fo	ormed from 30-gaug	Conformed		Р
	Туре	-K thermocouple wi	ire.	See below for locations: CH-3: Vessel u	or the thermocoup	le
					inside (above the c	-11
			TICED	venting hole)	mside(above the e	
		ADVER		-	tainer (near the vention	ng
		PLA	N	hole)	× ×	e
				CH-6: Cell con	tainer(side)	
				CH-7: Vessel b	ottom inside	
				CH-8: Heater s	urface	
						L.
Section 6.	2	TABLE: Determi	ination of thermal	runaway methodol	ogy	
				Cell Surface	Cell Surface	Location
Sample No	0	Open Circuit Voltage Before Test (Vdc)	Cell Failure method	Temperature at which gases are first vented (°C)	Temperature prior to thermal runaway (°C)	Maximum Temperatur prior to the runaway
0818CAS	01064	3.38	External Heating	130.3	193.4	Cell Side enclosure
0818CAS	01045	3.39	External Heating	147.8	223.4	Cell Side enclosure
0818CAS	01180	3.39	External Heating	149.3	211.2	Cell Side enclosure
0818CAS	01047	3.36	External Heating	145.9	211.2	Cell Side enclosure
			Supplementar	y information:		
			for the sole purj its consideratio part of a planning Planning and Envi	n and review as process under the ronment Act 1987. not be used for any nay breach any		



Temperature Curve and test sample figure

Section	Requirement	Comments	Verdict
	est case verdicts:		
Test obje	ct does meet the requirement: P	A (Not Applicable) (Pass) (Fail)This copied document to for the sole purpo its consideration a part of a planning p	se of enabling and review as
		Planning and Enviro The document must n purpose which ma convrite	onment Act 198 ot be used for ay breach any
ipment Us	a) Figures. a), b) overall view of r ed: Item no. 1,2,3,4,5,6	b) c) the reactor; c) inside view of the reactor	
te Start: 19/	Figures. a), b) overall view of red: Item no. 1,2,3,4,5,6 06/13 (YY/MM/DD)		
te Start: 19/	Figures. a), b) overall view of red: Item no. 1,2,3,4,5,6	the reactor; c) inside view of the reactor	Р
te Start: 19/ te End: 19/(Figures. a), b) overall view of f ed: Item no. 1,2,3,4,5,6 06/13 (YY/MM/DD) 06/19 (YY/MM/DD) Cell vent gas generated and captured ins an 82-L (21.7-gal) pressure vessel. The initiated with an initial condition of atmospheric pressure and less than 1% oxygen by volume. Cell vent gas composition determined us	the reactor; c) inside view of the reactor side test Conformed The test vessel was purified using high purity nitrogen to make sure the oxygen was less than 1% by volume in the initial test condition	P
te Start: 19/ te End: 19/(Figures. a), b) overall view of f ed: Item no. 1,2,3,4,5,6 (06/13 (YY/MM/DD) 06/19 (YY/MM/DD) Cell vent gas generated and captured ins an 82-L (21.7-gal) pressure vessel. The initiated with an initial condition of atmospheric pressure and less than 1% oxygen by volume.	the reactor; c) inside view of the reactor side Conformed test The test vessel was purified using high purity nitrogen to make sure the oxygen was less than 1% by volume in the initial test condition sing See below eter Other equivalent method used	
te Start: 19/ te End: 19/(Figures. a), b) overall view of f ed: Item no. 1,2,3,4,5,6 06/13 (YY/MM/DD) 06/19 (YY/MM/DD) Cell vent gas generated and captured ins an 82-L (21.7-gal) pressure vessel. The initiated with an initial condition of atmospheric pressure and less than 1% oxygen by volume. Cell vent gas composition determined us following method. 1. Fourier-Transform Infrared Spectrom with a minimum resolution of 1.0 cm-	the reactor; c) inside view of the reactor side Conformed test The test vessel was purified using high purity nitrogen to make sure the oxygen was less than 1% by volume in the initial test condition sing See below eter Other equivalent method used	Р
te Start: 19/ te End: 19/(Figures. a), b) overall view of the figures. (a) (YY/MM/DD) Cell vent gas generated and captured instant an 82-L (21.7-gal) pressure vessel. The finitiated with an initial condition of a through the figures. The figures is the figure of the figures of the figures. (b) (YY/MM/DD) Cell vent gas composition determined us following method. Fourier-Transform Infrared Spectrom with a minimum resolution of 1.0 cm a path length of at least 6.6 ft. (2 m), compared to the figures. 	the reactor; c) inside view of the reactor side Conformed test The test vessel was purified using high purity nitrogen to make sure the oxygen was less than 1% by volume in the initial test condition sing See below eter Other equivalent method used	P N/A
te Start: 19/ te End: 19/(Figures. a), b) overall view of the figures. (a) (YY/MM/DD) Cell vent gas generated and captured instant an 82-L (21.7-gal) pressure vessel. The finitiated with an initial condition of a through the figures. The figures is the figure of the figures of the figures. (b) (YY/MM/DD) Cell vent gas composition determined us following method. Fourier-Transform Infrared Spectrom with a minimum resolution of 1.0 cm a path length of at least 6.6 ft. (2 m), compared to the figures. 	side Conformed side Conformed test The test vessel was purified using high purity nitrogen to make sure the oxygen was less than 1% by volume in sing See below eter Other equivalent method used -1 and Conformed GC-MS was used for Gas composition analysis. sor Conformed	P N/A

Section	Requirement		Comments	Verdict
Possible to	est case verdicts:			
Test object	does not apply to the test object: et does meet the requirement: et does not meet the requirement:	N/A (Not P (Pass) F (Fail)	Applicable)	
	The lower flammability limit of the gas was determined in accordance ASTM E681		Gas Volume: 163.8L(STP Condition) Measured LFL:6.14%@12~18 °C, 101.3~101.5kPa Measured LFL at venting temperature = 5.4%@143± 1° C, 101± 2kPa	Р
			Gas Burning Velocity: 0.584m/s @ ambient temperature (22~30°C), atmospheric pressure. Pmax:109.36PSI(0.754MPa)	

ADVERTISE	ED	
PLAN		

Section 6.3	TABLE: Cell vent	gas composition test		
Sample No	0818CAS01064	0818CAS01045	0818CAS01180	0818CAS01047
Open Circuit Voltage Before Test (Vdc):	3.380	3.389	3.390	3.360
Cell Failure method:		External H	Ieating	
Pressure Vassal Volume (liter):	82	82	82	82
Cell Surface Temperature at which gases are first vented (°C):	130.3	147.8	149.3	145.9
Cell Surface Temperature prior to thermal runaway (°C):	193.4	223.4	211.2	211.2
Location of Maximum Temperature prior to thermal runaway:	Cell Side Enclosure			
Atmospheric Pressure Before Test (kPA):	8	3.75	8.75	14
Oxygen volume in pressure Vessel Before Test (%):	0.76	0.80	0.38	0.59

Note: Totally 4 cell samples were tested individually in a 82L reactor with an initial temperature condition 24.2 °C. The 4 cells were forced to thermal runaway using ceramic heater rated 220/230V, 500W. Before each testing, the vessel was purified by high purity nitrogen to make sure the oxygen was less than 1% by volume, Composition and concentration of the gas mixtures were identified and measured using gas chromatography. Gas mixtures were collected before and after thermal runaway testing, total 3 bag of gas samples for each cell sample, 1 indicated the initial atmospheric inside the vessel, 2 indicated the gas mixtures released during thermal runaway. Gas volume released was measured using the gas components data of the cell sample 0818CAS01045 for calculation.

See below table for the gas quantification:

Gas Sample	1521-04(3)
Gas	Measured %
H2	33.30%
СО	6.74%
CO2	19.63%
CH4	3.16%
C2H4	3.28%
C2H6	0.92%
С3Н6	1.09%
СЗН8	0.27%

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any convribut

PLAN

MASTER CONTRACT: N/A **REPORT:** 80008629 **PROJECT:** 80040846

9.86%

28.70%

4.62%

4.80%

1.35%

1.59%

0.39%

O2	0.25%	
N2	31.36%	
^	ication excluding N ₂ and O ₂	, <u> </u>
Gas quantif Gas Samp]
^		This

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any convright

ADVERTISED PLAN

Approximately 68.39% of the gas mass is accounted for in the testing, most of the remainder of the gas are air components (N_2 , O_2), which makes up 31.61% by volume. Total 163.8L(STP Conditions) gas mixtures collected during the testing excluding N_2 and O_2 .

Average cell surface temperature at gas venting: 143.3 °C;

Average cell surface temperature at cell thermal runaway: 209.8 °C.

Gas Volume: 163.8L

CO

CO2

CH4

C2H4

C2H6

C3H6

C3H8

Gas Composition: H₂ 48.69%, CO 9.86%, CO₂ 28.70%, CH₄ 4.62%, C₂H₄ 4.80%, C₂H₆ 1.35%, C₃H₆ 1.59%, C₃H₈ 0.39%.

Lower Flammability Limit(LFL) = 6.14% @12~18 °C,101.3~101.5kPa

Lower Flammability Limit (LFL) at venting temperature = $5.4\%@143\pm1^{\circ}C$, $101\pm2kPa$

Gas Burning Velocity: 0.584m/s @ ambient temperature (22~30°C), atmospheric pressure.

Pmax:109.36PSI(0.754MPa)

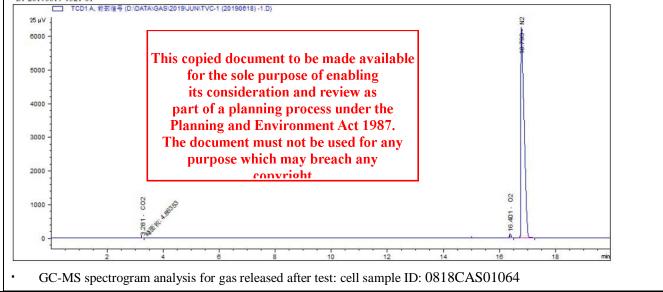
Pmax Rise Rate: 23153.83(159.64MPa/Sec) PSI/Sec

Supplementary information:

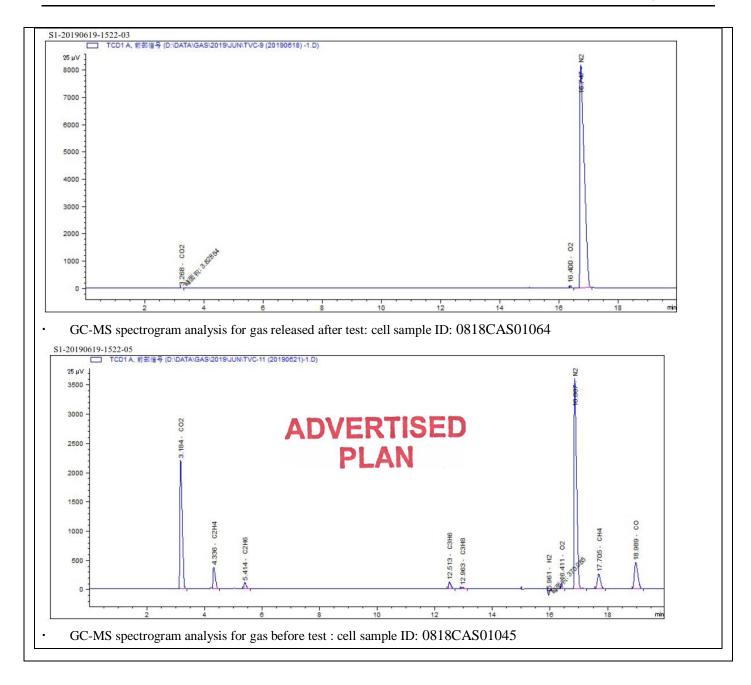
• Sample ID Instruction(Cell VS Gas Sample)

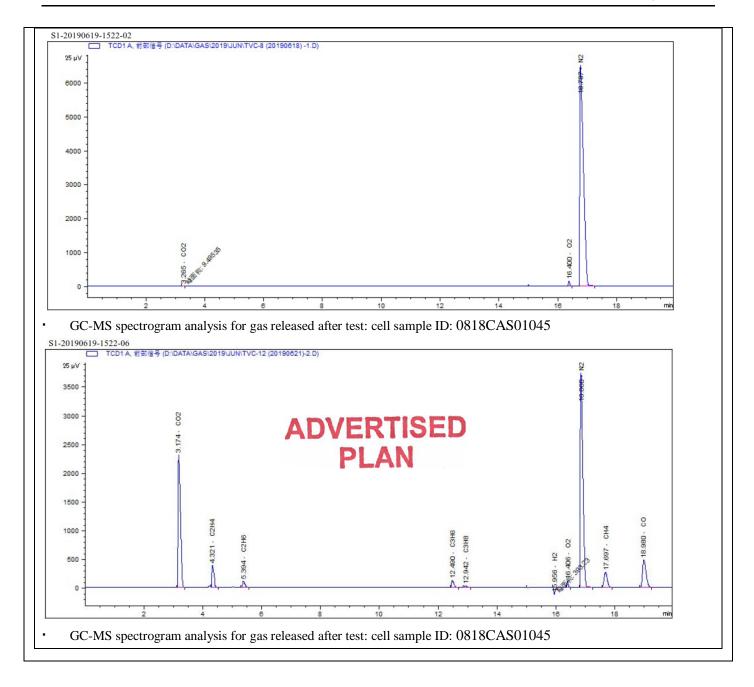
Gas Sample ID	Note	Cell Sample ID
S1-20190619-1521-01	Initial gas sample(before test)	0818CAS01064
S1-20190619-1522-05	Gas sample A after test	0818CAS01064
S1-20190619-1521-03	Gas sample B after test	0818CAS01064
S1-20190619-1522-02	Initial gas sample(before test)	0818CAS01045
S1-20190619-1522-06	Gas sample A after test	0818CAS01045
S1-20190619-1521-06	Gas sample B after test	0818CAS01045
S1-20190619-1522-03	Initial gas sample(before test)	0818CAS01180
S1-20190619-1522-01	Gas sample A after test	0818CAS01180
S1-20190619-1521-04	Gas sample B after test	0818CAS01180
S1-20190619-1522-04	Initial gas sample(before test)	0818CAS01047
S1-20190619-1521-02	Gas sample A after test	0818CAS01047
S1-20190619-1521-05	Gas sample B after test	0818CAS01047

The composition for the gas released.(%)

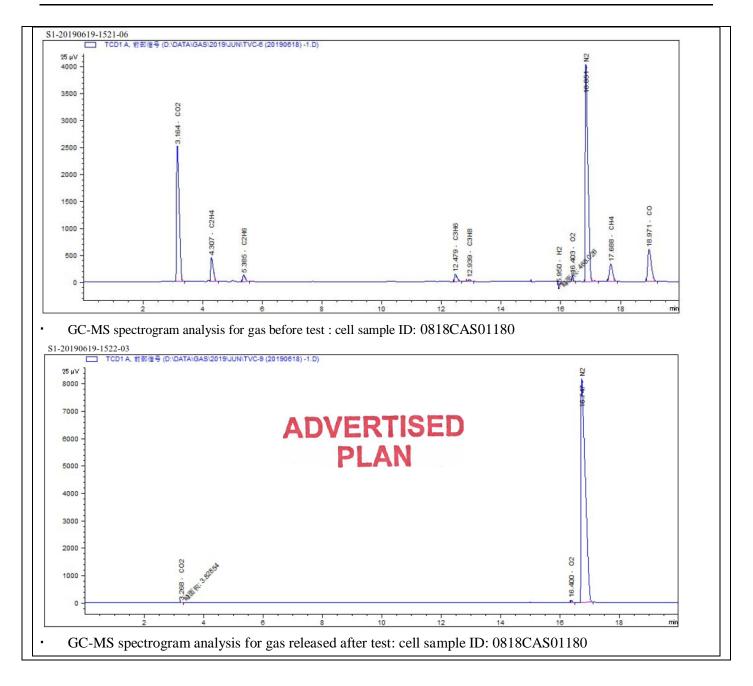

气体成分气相色谱分析

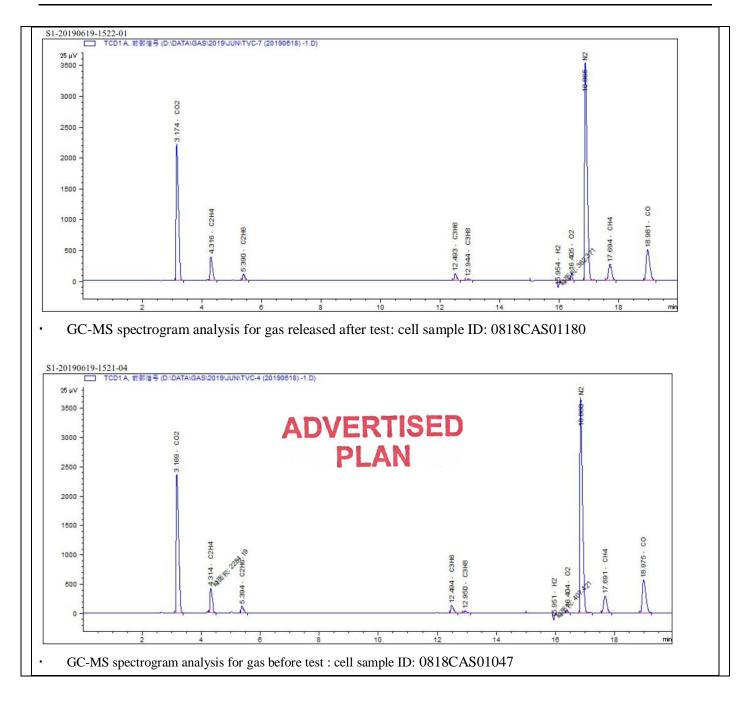
样品编号 Sample No.	气体成分 Gas Components									
作曲詞 与 Sample No.	CO2	C2H4	C2H6	C3H6	C3H8	H2	O2	N2	CH4	СО
S1-20190619-1521-01	0.01	/	/	/	1	/	0.76	99.23	/	/
S1-20190619-1521-02	20.09	3.38	0.92	1.07	0.26	30.28	0.44	33.58	3.29	6.68
S1-20190619-1521-03	21.04	3.65	1.00	1.09	0.33	25.66	0.68	35.79	3.53	7.23
S1-20190619-1521-04	19.63	3.28	0.92	1.09	0.27	33.30	0.25	31.36	3.16	6.74
S1-20190619-1521-05	20.15	3.51	0.94	1.12	0.28	30.82	0.37	32.67	3.24	6.90
S1-20190619-1521-06	18.09	3.12	0.82	0.98	0.24	37.40	0.43	30.03	2.94	5.94

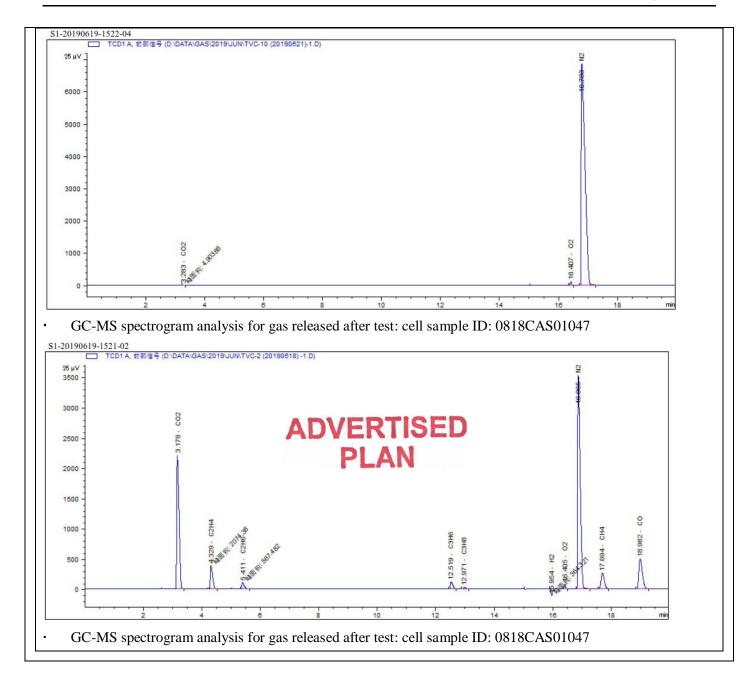

气体成分气相色谱分析


样品编号 Sample No.	气体成分 Gas Components									
17 nu saupie ivo.	CO2	C2H4	C2H6	C3H6	C3H8	H2	O2	N2	CH4	СО
S1-20190619-1522-01	19.90	3.48	0.95	1.06	0.27	30.15	0.62	33.48	3.31	6.77
S1-20190619-1522-02	0.02	/	/	1	/	/	0.80	99.19	/	/
S1-20190619-1522-03	0.01	/	/	1	/	/	0.38	99.62	/	/
S1-20190619-1522-04	0.01	/	/	/	/	/	0.59	99.40	/	/
S1-20190619-1522-05	19.79	3.23	0.93	1.06	0.28	30.69	0.51	34.30	3.10	6.11
S1-20190619-1522-06	19.43	3.14	0.91	1.04	0.28	32.31	0.53	33.42	3.02	5.93

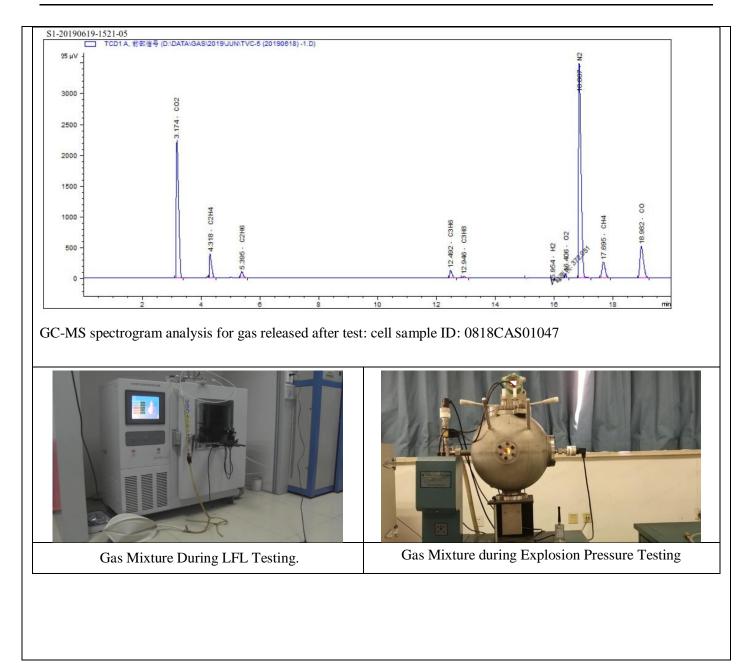
GC-MS spectrogram analysis for gas before test : cell sample ID: 0818CAS01064 \$1-20190619-1521-01




This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any convright


© 2018 CSA Group. All rights reserved.

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any convright


© 2018 CSA Group. All rights reserved.

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any convright

© 2018 CSA Group. All rights reserved.

Synthesis method was used for preparing the gas mixtures in accordance to the above gas composition and concentration identified, and the information for gas samples was noted as below:								
Cylinder No.	1814256							
Components name	Requested concentration	Certified Value	Unit	Relative Expended Uncertainity	Analytical Method			
C3H8	0.39%	0.39%	mol/mol	±1%	GC-FID			
C3H6	1.59%	1.59%	mol/mol	$\pm 1\%$	GC-FID			
C2H6	1.35%	1.35%	mol/mol	$\pm 1\%$	GC-FID			
C2H4	4.80%%	4.79%	mol/mol	$\pm 1\%$	GC-FID			
CO2	28.7%	28.7%	mol/mol	$\pm 1\%$	GC-FID			
CH4	4.62%	4.66%	mol/mol	$\pm 1\%$	GC-FID			
СО	9.86%	9.85%	mol/mol	$\pm 1\%$	GC-FID			
H2	Balance	Balance	mol/mol	$\pm 1\%$	GC-FID			

ADVERTISED

PLAN

The results for lower flammability level(LFL) of gas mixture at the cell venting temperature was noted as below in accordance to the requirement of ASTM E918-19, and the results was noted as below:

Measured LFL at cell venting temperature: 5.4%@143±1°C, 101±3kPa

Refer to below table for the details:

No.	с _s [%]	<i>Ti</i> [℃]	<i>p</i> i [kPa]	<i>p_{ex}</i> [kPa]	p_{ex}/p_i	Ignition?		
1	5.7	143.2	102.7	114.9	1.12	Y		
2	5.5	143.0	102.5	109.0	1.06	Y		
3	5.5	143.3	101.7	110.4	1.09	Y		
4	5.3	143.3	101.3	106.1	1.05	Ν		
5	5.3	143.3	100.0	102.5	1.02	Ν		
6	5.3	143.3	102.0	103.7	1.02	Ν		
Result	L ₁ =5.5%, L ₂ =	5.3%, LFL=5.4%	6 at 143(±1)℃ ar	nd 101(±2)kPa .				
Remark	The symbols used in this Attached Table are defined as below: L_1 ——The minimum sample concentration that gives flame propagation; L_2 ——The maximum sample concentration that does not give flame propagation; LFL is expressed as: $LFL = (L_1 + L_2)/2$							
	It is considered	explosion occurr	ed, if $p_{ex}/p_i \ge 1.0$	07.		pied docume or the sole pu		
						ts considerati		

© 2018 CSA Group. All rights reserved.

part of a planning process under the Planning and Environment Act 1987. The document must not be used for any Burning velocity of gas mixture released was done with the synthesis gas, sample No. 1814256 in accordance to the standard ISO 817: 2014, and the results was noted as below:

Measured burning velocity of gas mixture at room temperature $(22 \sim 30^{\circ}C)$ and atmospheric pressure: Su = 0.584m/s.

Refer to below table for the details.

No.	с _я [%]	S s [m/s]	<i>a_f</i> [m ²]	<i>A</i> f [m ²]	<i>S</i> " [m/s]
1	11.0	0.192	0.00112	0.00323	0.066
2	12.0	0.190	0.00123	0.00323	0.072
3	16.9	1.269	0.00121	0.00696	0.220
4	20.0	1.615	0.00126	0.00779	0.260
5	24.0	1.418	0.00126	0.00329	0.542
6	25.0	1.500	0.00120	0.00309	0.584
7	25.0	1.500	0.00126	0.00337	0.560
8	26.0	1.200	0.00120	0.00266	0.544
9	27.0	1.500	0.00115	0.00324	0.535
10	28.0	1.125	0.00120	0.00274	0.494
11	28.1	1.255	0.00126	0.00323	0.488
12	29.0	1.167	0.00120	0.00271	0.519
Result	$S_u = 0.584$ m/s at ro	om temperature and	atmosphere pressur	e.	
Remark	The symbols used S_S — Flame a_f — Cros A_f — Flame S_u is calculated	t otherwise defined: pied document to be r the sole purpose of s consideration and	f enabling review as		
Date Start: 201	ed: Item no. 6, 7, 8, 19-06-03 (YY/MM/I 0-07-21 (YY/MM/I	DD)	Plan The do	of a planning proce ning and Environme ocument must not be rpose which may be convright	ent Act 1987. e used for any

© 2018 CSA Group. All rights reserved.

MASTER C	N/A	
REPORT:	80008629	
PROJECT:	80040846	

TEST EQUIPMENT:

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any convright

Page No: 26 **Date Issued:** July 22, 2020

Ite m No.	Inventory Code / ID	Description	Manufacture r	Model	Range Used	Calibration Date (YYYY-MM- DD)	Next Calibration Due Date (YYYY-MM- DD)
1	74XWE0010 4	Battery Cycler	Xinwei	5V200A	$0\sim$	2019-05-16	2020-05-15
	т	Cycler			5V, 0~ 200A		
2	L103319	Chamber	Hading	HLT702P	-35∼80 ℃	2019-05-19	2020-05-18
3	72BAQ00382	Electronic Scale	Yingzhan	ALH-30	0~2.5kg	2018-11-20	2019-11-19
4	74OTE01427	Data Logger	HIOKI	LR8431	0~500 °C, 0~10V	2019-04-08	2020-04-07
5	78BME00005	Perssure Conversion Equipment	Guangxi Xisen	BST6600 -20TG	0~5MPa	2019-05-16	2020-05-18
6	L108248	GC-MS	Agilent	5977- 7890B	-	2018-10-19	2020-10-18
7	16120801	Pressure Conversion Equipment for LFL tester	-	HM27A	0∼ 20KPa, 0∼5V	2019-03-12	2020-04-11
8	HY1706P20	Pressure Conversion Equipment for LFL tester(20L)	_	Hy1706P 20	0~2MPa	2019-06-26	2020-06-25
9	HY100PA	Vacuum pressure sensor	-	HY100P A 20190604 001	0~100K Pa	2019-06-26	2020-06-25
10	PC073	Pressure Transducer	-	KJ16-734	- 0.1~0.5 MPa	2020-03-28	2021-03-27
11	PC074	Pressure Transducer	-	KJ16-734	0~35MP a	2020-03-28	2021-03-27
12	PC075	Pressure Transducer	-	KJ16-734	0~50MP a	2020-03-28	2021-03-27

Ite m No	Inventory Code / ID	Description	Manufacture r	Model	Range Used	Calibration Date (YYYY-MM- DD)	Next Calibration Due Date (YYYY-MM- DD)
13	05230A1/129 67	Oxygen Analyzer	SRVOMEX	MiniMP 5200	0~15%	2019-10-30	2020-12-23

---End of Report---

This copied document to be made available for the sole purpose of enabling its consideration and review as part of a planning process under the Planning and Environment Act 1987. The document must not be used for any purpose which may breach any convright

ADVERTISED PLAN